精英家教网 > 高中数学 > 题目详情
已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极小值,则实数a的取值范围是
 
考点:函数在某点取得极值的条件
专题:导数的综合应用
分析:根据函数导数的定义和性质即可得到结论.
解答: 解:由f′(x)=a(x+1)(x-a)=0,
解得a=0或x=-1或x=a,
若a=0,则f′(x)=0,此时函数f(x)为常数,没有极值,故a≠0.
若a=-1,则f′(x)=-(x+1)2≤0,此时函数f(x)单调递减,没有极值,故a≠-1.
若a<-1,由f′(x)=a(x+1)(x-a)>0得a<x<-1此时函数单调递增,
由f′(x)=a(x+1)(x-a)<0得x<a或x>-1此时函数单调递减,即函数在x=a处取到极小值,满足条件.
若-1<a<0,由f′(x)=a(x+1)(x-a)>0得-1<x<a此时函数单调递增,
由f′(x)=a(x+1)(x-a)<0得x<-1或x>a,此时函数单调递减,即函数在x=a处取到极大值,不满足条件.
若a>0,由f′(x)=a(x+1)(x-a)>0得x<-1或x>a此时函数单调递增,
由f′(x)=a(x+1)(x-a)<0得-1<x<a,此时函数单调递减,即函数在x=a处取到极小值,满足条件.
综上:a<-1或a>0,
故答案为:a<-1或a>0
点评:本题主要考查导数和极值的关系,利用二次函数的图象和性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,内角A,B,C的对边分别是a,b,c,面积为S.
(1)求证:a2+b2+c2≥4
3
S;
(2)求证:tan
A
2
tan
B
2
,tan
B
2
tan
C
2
,tan
C
2
tan
A
2
中至少有一个不小于
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
2x+
2

(Ⅰ)计算f(
1
2
+x)+f(
1
2
-x)的值
(Ⅱ)若关于x的不等式:f[23x-2-x+m(2x-2-x)+
1
2
]<
2
2
在区间[1,2]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用数学归纳法证明不等式1+
1
2
+
1
3
+…+
1
2n-1
<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加的项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在坐标原点,焦点在x轴上,A是右顶点,B是虚轴的上端点,F是左焦点,当BF⊥AB时,此类双曲线称为“黄金双曲线”,其离心率为e=
5
+1
2
,类比“黄金双曲线”,推算出“黄金椭圆”(如图)的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
16
-
y2
9
=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有3个黑球,2个红球,从中同时取出2个球,求取出的球中含有红球个数的数学期望
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=1+i(i是虚数单位),则
4
z
-z2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=
2
2
,则下列结论中正确的序号是
 

(1)AC⊥BE;        
(2)EF∥平面ABCD;
(3)面AEF⊥面BEF; 
(4)三棱锥A-BEF的体积为定值.

查看答案和解析>>

同步练习册答案