精英家教网 > 高中数学 > 题目详情
10.已知数列{an}共有5项,满足a1>a2>a3>a4>a5≥0,且对任意i、j(1≤i≤j≤5),有ai-aj仍是该数列的某一项,现给出下列4个命题:
(1)a5=0;
(2)4a4=a1
(3)数列{an}是等差数列;
(4)集合A={x|x=ai+aj,1≤i≤j≤5}中共有9个元素.
则其中真命题的序号是(  )
A.(1)、(2)、(3)、(4)B.(1)、(4)C.(2)、(3)D.(1)、(3)、(4)

分析 1≤i≤j≤5),有ai-aj仍是该数列的某一项,因此0∈{an},由于a4-a5=a4∈{an},(a4>0),可得a3-a4=a4,即a3=2a4,以此类推可得:a2=3a4,a1=4a4
即可判断出结论.

解答 解:∵1≤i≤j≤5),有ai-aj仍是该数列的某一项,
∴ai-ai=0,
∴当a5=0时,
则a4-a5=a4∈{an},(a4>0).
必有a3-a4=a4,即a3=2a4
而a2-a3=a3或a4
若a2-a3=a3,则a2-a4=3a4,而3a4≠a3,a4,a5,舍去;
若a2-a3=a4∈{an},此时a2=3a4
同理可得a1=4a4
可得数列{an}为:4a4,3a4,2a4,a4,0(a4>0).
综上可得:(1)a5=0;
(2)4a4=a1
(3)数列{an}是等差数列;
(4)集合A={x|x=ai+aj,1≤i≤j≤5}={8a4,7a4,6a4,5a4,4a4,3a4,2a4,a4,0(a4>0)}中共有9个元素.
因此(1)(2)(3)(4)都正确.
故选:A.

点评 本题考查了等差数列的性质、新定义,考查了分析问题与解决问题的能力、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=alnx+(x-1)2
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1,x2,且x1<x2,是否存在常数k∈[-1,0],使得f(x1)+f(x2)≥ka2恒成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了解某市公益志愿者的年龄分布情况,从全市志愿者中随机抽取了80名志愿者,对其年龄进行统计后得到频率分布直方图如下,但是年龄组在[25,30)的数据不慎丢失.
(Ⅰ)求年龄组[25,30)对应的小长方形的高,并估计抽取的志愿者中年龄在[25,30)的人数
(Ⅱ)轨迹市志愿者的平均年龄(同一组中的数据用该组区间的中点值作代表)
(Ⅲ)将频率视为概率,从该市大量志愿者中随机抽取3名志愿者参加某项活动,记抽取的志愿者年龄不小于35随的人数为X,求X的分布列及数学期望EX和方程DX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A=$\left\{{({x,y})|\left\{{\begin{array}{l}{x+y-1≤0}\\{x-y-3≤0}\\{x≥1}\end{array}}\right.}\right\},B\left\{{({x,y})|{{({x-2})}^2}+{{({y-2})}^2}≤{R^2},R>0}\right\}$.且A∩B≠ϕ,R的最小值为(  )
A.$\frac{{2\sqrt{3}}}{2}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在多面体ABCDE中,CD⊥平面ABC,BE∥CD,AB=2$\sqrt{5}$,AC=4,BC=2,CD=4,BE=1.
(1)求证:平面ADC⊥平面BCDE;
(2)试问在线段DE上是否存在点S,使得AS与平面ADC所成角的余弦值为$\frac{3\sqrt{5}}{7}$?若存在,确定S的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某中学有三个年级,各年级男、女生人数如表所示:
高一年级高二年级高三年级
女生370z200
男生380370300
已知在全校学生中随机抽取1名学生,抽到三年级男生的概率是0.15.
(Ⅰ)求z的值;
(Ⅱ)用水机抽样的方法从高一年级女生中选出8人,测量他们的体重,结果如下:52,56,60,61,55,62,58,59(单位:kg).把这8人的体重看作一个总体,从中任取一个数,求该数ξ样本平均数之差的绝对值不超过2的概率;
(Ⅲ)用分层抽样的方法在高三年级中抽取一个容量为5的样本,将该样本看成一个总体,从中任选2名学生,求这2名学生均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.关于x的函数f(x)=m(x2-4x+lnx)-(2m2+1)x+2lnx,其中m∈R,函数f(x)在(1,0)处切线斜率为0.
(1)已知函数f(x)的图象与直线y=k2-2k无公共点,求实数k的取值范围;
(2)已知p≤0,若对任意的x∈[1,2],总有f(x)≥$\frac{(p-2)x}{2}$+$\frac{p+2}{2x}$+2x-x2成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某中学成立A、B、C、D四个社团,每个社团最多招收团员6人,现有10位同学报名参加社团活动,每位同学只能参加一项,已知A社团一定有人参加,其他社团可能有人参加,也可能没人参加,则四个社团参加人数的不同的情况有多少种(  )
A.220B.200C.170D.173

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知复数z=3sinθ+icosθ(i是虚数单位),且|z|=$\sqrt{5}$,则当θ为钝角时,tanθ=-1.

查看答案和解析>>

同步练习册答案