精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=|x+1|-2|x|.
(1)求不等式f(x)≤-6的解集;
(2)若存在实数x满足f(x)=log2a,求实数a的取值范围.

分析 (1)通过讨论x的范围,求出不等式的解集即可;(2)求出f(x)的最大值,问题转化为${log}_{2}^{a}$≤1,解出即可.

解答 解:(1)x≥0时,f(x)=x+1-2x=-x+1≤-6,
解得:x≥7,
-1<x<0时,f(x)=x+1+2x≤-6,无解,
x≤-1时,f(x)=-x-1+2x≤-6,
解得:x≤-7,
故不等式的解集是{x|x≥7或x≤-7};
(2)x≥0时,f(x)=-x+1≤1,
-1<x<0时,f(x)=3x+1,-2<f(x)<1,
x≤-1时,f(x)=x-1≤-2,
故f(x)的最大值是1,
若存在实数x满足f(x)=log2a,
只需${log}_{2}^{a}$≤1即可,解得:0<a≤2.

点评 本题考查了解绝对值不等式问题,考查了分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若三角形ABC为钝角三角形,三边为2,3,x,则x的取值范围是(  )
A.(1,$\sqrt{5}$)B.(1,$\sqrt{5}$)∪($\sqrt{13}$,5)C.($\sqrt{5}$,$\sqrt{13}$)D.($\sqrt{13}$,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知可行域$\left\{\begin{array}{l}x≥0\\ 3x+y≤4\\ x+3y≥4\end{array}\right.$,若直线$y=kx+\frac{4}{3}$将可行域所表示的图形的面积平分,则k的值为$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为qk,a2k,a2k+1,a2k+2成等差数列,其公差为dk,设bk=$\frac{1}{{q}_{k}-1}$.
(1)若d1=2,求a2的值;
(2)求证:数列{bn}为等差数列;
(3)若q1=2,设cn=$\frac{{b}_{n}}{{b}_{n+1}}$,是否存在m、k(k>m≥2,k,m∈N*),使得c1、cm、ck成等比数列,若存在,求出所有符合条件的m、k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.cos(-$\frac{26π}{3}$)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}满足a1=10,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$,则{an}中第一个小于$\frac{1}{10000}$的数是(  )
A.a12B.a13C.a14D.a15
E.a16         

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.等比数列{an}的各项均为正数,且a2=2,a4=$\frac{1}{2}$.
(1)求数列{an}的通项公式;
(2)设bn=-log2an+3,数列{bn}的前n项和为Tn,求$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+$\frac{1}{{T}_{3}}$+…+$\frac{1}{{T}_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数学活动小组由12名同学组成,现将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出一名组长,则不同的分配方案有29937600种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知偶函数f(x)满足:?x∈R,恒有f(2-x)=f(2+x)且f(x)=$\left\{\begin{array}{l}{λ\sqrt{1-{x}^{2}}(0≤x≤1)}\\{x-1(1<x≤2)}\end{array}\right.$,若方程2f(x)-x=0恰好有5个实根,则正实数λ等于(  )
A.$\frac{3}{2}$$\sqrt{7}$B.4C.$\frac{3\sqrt{5}}{2}$D.2$\sqrt{7}$

查看答案和解析>>

同步练习册答案