设F1,F2分别是椭圆E:x2+
=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.
科目:高中数学 来源: 题型:
行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,D点在直线3x-y+1=0上移动,则B点的轨迹方程为( )
A.3x-y-20=0 B.3x-y-10=0
C.3x-y-9=0 D.3x-y-12=0
查看答案和解析>>
科目:高中数学 来源: 题型:
已知曲线C的方程为:ax2+ay2-2a2x-4y=0(a≠0,a为常数).
(1)判断曲线C的形状;
(2)设曲线C分别与x轴,y轴交于点A,B(A,B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;
(3)设直线l:y=-2x+4与曲线C交于不同的两点M,N,且|OM|=|ON|,求曲线C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知双曲线
-
=1(a>0,b>0)的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;
(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-
,求双曲线的离心率.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,抛物线C1:y2=2px和圆C2:(x-
)2+y2=
,其中p>0,直线l经过C1的焦点,依次交C1,C2于A,B,C,D四点,则
·
的值为( )![]()
A.p2 B.![]()
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com