精英家教网 > 高中数学 > 题目详情
10.已知集合A={0,1,2},B={x|1<x<4},则集合A∩B=(  )
A.{2}B.{1,2}C.{0,1,2}D.{0,1,2,3}

分析 由题意和交集的运算求出A∩B即可.

解答 解:因为集合A={0,1,2},B={x|1<x<4},
则集合A∩B={2},
故选A.

点评 本题考查交集及其运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命题“?t∈R,A∩B=∅”是真命题,则实数a的取值范围是(  )
A.(-∞,0)∪($\frac{4}{3}$,+∞)B.(0,$\frac{4}{3}$]C.[0,$\frac{4}{3}$]D.(-∞,0]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$f(x)={log_{0.5}}({x^2}-mx-m)$.
(1)若函数f(x)的定义域为R,求实数m的取值范围;
(2)若函数f(x)在区间$(-2,-\frac{1}{2})$上是递增的,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知p:“直线x+y-m=0与圆(x-1)2+y2=1相交”;q:“方程mx2-2x+1=0有实数解”.若“p∨q”为真,“¬q”为假,则实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设点O是平行四边形ABCD两条对角线的交点,给出下列向量组:
①$\overrightarrow{AD}$与$\overrightarrow{AB}$;      
②$\overrightarrow{DA}$与$\overrightarrow{BC}$;       
③$\overrightarrow{CA}$与$\overrightarrow{DC}$;      
④$\overrightarrow{OD}$与$\overrightarrow{OB}$.
其中可作为该平面其他向量基底的是(  )
A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用二分法找函数f(x)=2x+3x-7在区间[0,4]上的零点近似值,取区间中点2,则下一个存在零点的区间为(  )
A.(0,1)B.(0,2)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(3,x).
(1)如果$\overrightarrow{a}$∥$\overrightarrow{b}$,求实数x的值;
(2)如果x=-1,求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知第二象限的角α的终边与单位圆的交点$P(m,\frac{{\sqrt{3}}}{2})$,则tanα=-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年湖北省仙桃市高一下学期期末考试数学试卷(解析版) 题型:填空题

不等式的解集为,则

查看答案和解析>>

同步练习册答案