精英家教网 > 高中数学 > 题目详情
17.若变量x,y满足约束条件$\left\{\begin{array}{l}{y≤0}\\{x-2y≥1}\\{x-4y≤3}\end{array}\right.$,则z=3x+5y的最小值为(  )
A.9B.-9C.-8D.8

分析 作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最小值.

解答 解:不等式组对应的平面区域如图:
由z=3x+5y得y=$-\frac{3}{5}$$x+\frac{z}{5}$,平移直线y=$-\frac{3}{5}$$x+\frac{z}{5}$,
则由图象可知当直线y=$-\frac{3}{5}$$x+\frac{z}{5}$经过点A时直线y=$-\frac{3}{5}$$x+\frac{z}{5}$的截距最小,
此时z最小,
由$\left\{\begin{array}{l}{x-2y=1}\\{x-4y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$,即A(-1,-1),
此时z=3×(-1)+5×(-1)=-8,
故选:C.

点评 本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在等差数列{an}中a1=-2015,其前n项和为Sn,若2S6-3S4=24,则S2015=(  )
A.-2014B.2014C.2015D.-2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,取一个底面半径和高都为R的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R的半球放在同一水平面α上.用一平行于平面α的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为S和S圆环,那么(  )
A.S>S圆环B.S<S圆环C.S=S圆环D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等差数列{an}中,a1+a3=10,a4+a6=4,则公差d的值为(  )
A.1B.2C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax+$\frac{a-1}{x}$+1-2a(a>0),若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=ln({1-\frac{a}{x+1}})(a∈R)$.命题p:?a∈R,f(x)是奇函数;命题q:?a∈R,f(x)在定义域内是增函数,那么下列命题为真命题的是(  )
A.?pB.p∧qC.(?p)∧qD.p∧(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=sin(2x+\frac{π}{3})+cos(2x-\frac{π}{6}),x∈R$.
(1)求$f(\frac{π}{4})$的值;
(2)求函数f(x)的值域和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,正视图是面积为$\frac{9}{2}$π的半圆,俯视图是正三角形,此几何体的体积为(  )
A.$\frac{9\sqrt{3}}{2}$πB.9$\sqrt{3}$πC.$\frac{9\sqrt{3}}{4}$πD.3$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=3$\sqrt{2}$,AA1=2,点P、Q分别为A1B和B1C1的中点.
(Ⅰ)证明:PQ∥平面A1ACC1
(Ⅱ)求三棱锥Q-A1BC的体积.

查看答案和解析>>

同步练习册答案