精英家教网 > 高中数学 > 题目详情
4.已知非空集合A是由一些函数组成,满足如下性质:
①对任意f(x)∈A,f(x)均存在反函数f-1(x),且f-1(x)∈A;
②对任意f(x)∈A,方程f(x)=x均有解;
③对任意f(x)、g(x)∈A,若函数g(x)为定义在R上的一次函数,则f(g(x))∈A;
(1)若f(x)=${(\frac{1}{2})^x}$,g(x)=2x-3均在集合A中,求证:函数h(x)=${log_{\frac{1}{2}}}$(2x-3)∈A;
(2)若函数f(x)=$\frac{{{x^2}+a}}{x+1}$(x≥1)在集合A中,求实数a的取值范围;
(3)若集合A中的函数均为定义在R上的一次函数,求证:存在一个实数x0,使得对一切f(x)∈A,均有f(x0)=x0

分析 (1)由f(x)=${(\frac{1}{2})^x}$∈A,根据性质①可得:f-1(x)=$lo{g}_{\frac{1}{2}}x$∈A,且存在x0>0,使得$lo{g}_{\frac{1}{2}}{x}_{0}$=x0,由g(x)=2x-3∈A,且为一次函数,根据性质③即可证明.
(2)由性质②,方程$\frac{{{x^2}+a}}{x+1}$=x(x≥1),即a=x在x∈[1,+∞)上有解,可得a≥1.变形f(x)=$\frac{{x}^{2}+a}{x+1}$=x+1+$\frac{a+1}{x+1}$-2,(x∈[1,+∞)).对$\sqrt{a+1}$与2的关系分类讨论,利用基本不等式的性质即可得出.
(3)任取f1(x)=ax+b,f2(x)=cx+d∈A,由性质(1)a,c≠0,不妨设a,c≠1,(若a=1,则b=0,f1(x)=x),由性质③函数g(x)=f1(f2(x))=acx+(ad+b)∈A,函数h(x)=f2(f1(x))=acx+(bc+d)∈A,由性质①:h-1(x)=$\frac{x-(bc+d)}{ac}$∈A,由性质③:h-1(g(x))=$\frac{acx+(bd+b)-(bc+d)}{ac}$=x=$\frac{(ad+b)-(bc+d)}{ac}$∈A,由性质②方程:x+$\frac{(ad+b)-(bc+d)}{ac}$=x有解,可得ad+b=bc+d,即$\frac{b}{a-1}=\frac{d}{c-1}$,即可证明.

解答 (1)证明:由f(x)=${(\frac{1}{2})^x}$∈A,根据性质①可得:f-1(x)=$lo{g}_{\frac{1}{2}}x$∈A,且存在x0>0,使得$lo{g}_{\frac{1}{2}}{x}_{0}$=x0
由g(x)=2x-3∈A,且为一次函数,根据性质③可得:h(x)=$lo{g}_{\frac{1}{2}}(2x-3)$=f-1(g(x))∈A.
(2)解:由性质②,方程$\frac{{{x^2}+a}}{x+1}$=x(x≥1),即a=x在x∈[1,+∞)上有解,∴a≥1.
由f(x)=$\frac{{x}^{2}+a}{x+1}$=$\frac{{x}^{2}-1+a+1}{x+1}$=x+1+$\frac{a+1}{x+1}$-2,(x∈[1,+∞)).
若$\sqrt{a+1}$>2,a>3时,$\frac{a-1}{2}$>1,且f(1)=$f(\frac{a-1}{2})$,∴此时f(x)没有反函数,即不满足性质①.
若$\sqrt{a+1}$≤2,1≤a≤3时,函数f(x)在[1,+∞)上单调递增,∴函数f(x)有反函数,即满足性质①.
综上:a∈[1,3].
(3)证明:任取f1(x)=ax+b,f2(x)=cx+d∈A,由性质(1)a,c≠0,不妨设a,c≠1,(若a=1,则b=0,∴f1(x)=x),
由性质③函数g(x)=f1(f2(x))=acx+(ad+b)∈A,函数h(x)=f2(f1(x))=acx+(bc+d)∈A,
由性质①:h-1(x)=$\frac{x-(bc+d)}{ac}$∈A,
由性质③:h-1(g(x))=$\frac{acx+(bd+b)-(bc+d)}{ac}$=x=$\frac{(ad+b)-(bc+d)}{ac}$∈A,
由性质②方程:x+$\frac{(ad+b)-(bc+d)}{ac}$=x有解,∴ad+b=bc+d,即$\frac{b}{a-1}=\frac{d}{c-1}$,
f1(x)=x,可得ax+b=x,x=$\frac{b}{a-1}$.f2(x)=x,可得cx+d=x,x=$\frac{d}{c-1}$.
由此可知:对于任意两个函数f1(x),f2(x),存在相同的x0满足:f1(x0)=x0f2(x0),
∴存在一个实数x0,使得对一切f(x)∈A,均有f(x0)=x0

点评 本题考查了反函数的性质、方程的解法、分类讨论方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在Rt△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则$\overrightarrow{CE}•\overrightarrow{AF}$=(  )
A.9B.-9C.7D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过抛物线y2=4x的焦点F作直线l,与抛物线分别交于A、B两点(A点在第一象限),若S△AOB=3S△FOB,则直线l的斜率k=(  )
A.$\sqrt{3}$B.2C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线C:y2=-8x的交点为F,直线l:x=1,点A是l上一动点,直线AF与抛物线C的一个交点为B,若$\overrightarrow{FA}$=-$\overrightarrow{FB}$,则|AB|=(  )
A.20B.14C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x∈(0,$\frac{π}{2}$],则下列命题:(1)x≥sinx;(2)sinx≥xcosx;(3)y=$\frac{sinx}{x}$是单调减函数,其中真命题的个数是(  )
A.,0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设集合P={1,2,…,6},A,B是P的两个非空子集.则所有满足A中的最大数小于B中的最小数的集合对(A,B)的个数为:129.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解关于x的不等式:$\frac{a(x-1)}{x-2}$>1(a>0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式0<x-$\frac{1}{x}$<1解集为{x|1<x<$\frac{1+\sqrt{5}}{2}$或-1<x<$\frac{1-\sqrt{5}}{2}$};.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若单位向量$\overrightarrow{b}$与向量$\overrightarrow{a}$=(2,1)同向,则$\overrightarrow{b}$=(  )
A.(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$)C.(-$\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$)D.($\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

同步练习册答案