精英家教网 > 高中数学 > 题目详情
15.过抛物线y2=4x的焦点F作直线l,与抛物线分别交于A、B两点(A点在第一象限),若S△AOB=3S△FOB,则直线l的斜率k=(  )
A.$\sqrt{3}$B.2C.2$\sqrt{2}$D.3

分析 把直线的方程与抛物线的方程联立,利用根与系数的关系、S△AOB=3S△FOB即可得出.

解答 解:抛物线y2=4x,∴焦点F(1,0)
设直线AB方程为x=my+1,A(x1,y1),B(x2,y2),
将直线AB的方程与抛物线的方程联立$\left\{\begin{array}{l}{x=my+1}\\{{y}^{2}=4x}\end{array}\right.$,消去x得y2-4my-4=0.
∴y1+y2=4m,y1y2=-4. ①
∵S△AOB=3S△FOB
∴y1=-2y2.          ②
联立①和②,消去y1,y2,得m=$\frac{\sqrt{2}}{4}$.
∴直线AB的斜率是2$\sqrt{2}$.
故选:C.

点评 本题考查了直线与抛物线的相交问题,熟练掌握一元二次方程的根与系数的关系、直线的斜率公式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知f(x)=|x-2|-|x-a|.
(Ⅰ)当a=-5时,解不等式f(x)<1;
(Ⅱ)若f(x)≤-|${x-\frac{1}{4}}$|的解集包含[1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC中,$\overrightarrow{BD}$=λ$\overrightarrow{BC}$(0<λ<1),cosC=$\frac{3}{5}$,cos∠ADC=$\frac{\sqrt{2}}{10}$.
(1)求∠CAD的大小;
(2)若AC=7,BD=10,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从抛物线y2=2x上的点A(x0,y0)(x0>2)向圆(x-1)2+y2=1引两条切线分别与y轴交B,C两点,则△ABC的面积的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在△ABC中,c=6,A=120°,C=30°,解这个三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,平面ABCD⊥平面ABEF,四边形ABCD是矩形,四边形ABEF是等腰梯形,其中AB∥EF,AB=2AF,∠BAF=60°,O,P分别为AB,CB的中点,M为△OBF的重心.
(I)求证:平面ADF⊥平面CBF;
(II)求证:PM∥平面AFC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=2x2+2bx+c,且f(0)=-6,f(x)的最小值为-8,求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知非空集合A是由一些函数组成,满足如下性质:
①对任意f(x)∈A,f(x)均存在反函数f-1(x),且f-1(x)∈A;
②对任意f(x)∈A,方程f(x)=x均有解;
③对任意f(x)、g(x)∈A,若函数g(x)为定义在R上的一次函数,则f(g(x))∈A;
(1)若f(x)=${(\frac{1}{2})^x}$,g(x)=2x-3均在集合A中,求证:函数h(x)=${log_{\frac{1}{2}}}$(2x-3)∈A;
(2)若函数f(x)=$\frac{{{x^2}+a}}{x+1}$(x≥1)在集合A中,求实数a的取值范围;
(3)若集合A中的函数均为定义在R上的一次函数,求证:存在一个实数x0,使得对一切f(x)∈A,均有f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设x,y满足约束条件$\left\{\begin{array}{l}{y≤x+2}\\{x+y≤2}\\{x+2y≥0}\end{array}\right.$,则z=y-2x的最大值是$\frac{10}{3}$;若函数y=|2x+m|与该约束条件表示的平面区域有公共点,则实数m的取值范围是-4≤m≤$\frac{10}{3}$.

查看答案和解析>>

同步练习册答案