精英家教网 > 高中数学 > 题目详情
6.若复数$\frac{2a+2i}{1+i}$(α∈R)是纯虚数,则复数2a+2i在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 化简复数$\frac{2a+2i}{1+i}$,根据纯虚数的定义求出a的值,写出复数2a+2i对应复平面内点的坐标,即可得出结论.

解答 解:复数$\frac{2a+2i}{1+i}$=$\frac{2(a+i)(1-i)}{(1+i)(1-i)}$=(a+1)+(-a+1)i,
该复数是纯虚数,∴a+1=0,解得a=-1;
所以复数2a+2i=-2+2i,
它在复平面内对应的点是(-2,2),
它在第二象限.
故选:B.

点评 本题考查了复数的化简与代数运算问题,也考查了纯虚数的定义与复平面的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设a为实数,函数f(x)=(x-a)2+|x-a|-a(a+1),x∈R.求f(x)的单调区间及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正四棱锥的侧面是正三角形,则它的侧面与底面所成角的大小是arccos$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的导函数:
(1)y=e-x+2(2x+1)5
(2)y=cos(3x一1)-ln(-2x-1);
(3)y=$\frac{\sqrt{2x-1}}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)对任意实数x,都有f(x)≥x,且当x∈[1,3)时,有$f(x)≤\frac{1}{8}{(x+2)^2}$成立.
(1)证明:f(2)=2;
(2)若f(-2)=0,求f(x)的表达式;
(3)在题(2)的条件下设g(x)=f(x)-$\frac{mx}{2}$,x∈[0,+∞),若g(x)图象上的点都位于直线y=$\frac{1}{4}$的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若角α的终边经过点P(5,-5),且α∈(-180°,180°),求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某台机床加工的1000只产品中次品数的频率分布如表,则次品数的众数、平均数依次为0和5,3.4..
次品数01235
频率0.50.20.050.20.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在区间($\frac{1}{3}$,4)上有极值点,则实数a的取值范围是(2,$\frac{17}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,b=2,$cosC=\frac{3}{4}$,△ABC的面积为$\frac{{\sqrt{7}}}{4}$.
(1)求a的值;
(2)求sinA值.

查看答案和解析>>

同步练习册答案