分析 求出圆的圆心坐标与半径,利用圆心到直线的距离与半弦长求解三角形的面积,然后求出最大值即可.
解答 解:圆C:(x-a)2+(y-a)2=1(a>0)的圆心(a,a)半径为1,
圆心到直线y=2x的距离d=$\frac{|2a-a|}{\sqrt{5}}$=$\frac{a}{\sqrt{5}}$,半弦长为:$\sqrt{1{-(\frac{a}{\sqrt{5}})}^{2}}$=$\sqrt{{1-\frac{a}{5}}^{2}}$,
∴△CPQ的面积S=$\frac{1}{2}$•2$\sqrt{{1-\frac{a}{5}}^{2}}$•$\frac{a}{\sqrt{5}}$=$\sqrt{(1-\frac{{a}^{2}}{5})•\frac{{a}^{2}}{5}}$,故当$\frac{{a}^{2}}{5}$=$\frac{1}{2}$,即a=$\sqrt{\frac{5}{2}}$$\frac{\sqrt{10}}{2}$时,S取得最大值为$\frac{1}{2}$,
故答案为:$\frac{\sqrt{10}}{2}$.
点评 本题考查直线与圆的位置关系的应用,三角形面积的最值的求法,点到直线的距离公式的应用等知识,考查分析问题解决问题的能力,属于基础题.
科目:高中数学 来源: 题型:解答题
| x | 3 | -2 | 4 | $\sqrt{2}$ |
| y | -2$\sqrt{3}$ | 0 | -4 | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3,4,5,6} | B. | {1,2,3} | C. | {4,5} | D. | {4,5,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1) | B. | (-1,3) | C. | (-∞,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an+1=$\frac{1}{2}{a_n}$+150 | B. | an+1=$\frac{1}{3}{a_n}$+200 | C. | an+1=$\frac{1}{5}{a_n}$+300 | D. | an+1=$\frac{2}{5}{a_n}$+180 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com