精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-4x-4,x≤0}\\{|lnx|,x>0}\end{array}\right.$,若函数g(x)=f(x)-k有4个不同的零点,则实数k取值范围是(  )
A.(0,$\frac{4}{3}$)B.[0,$\frac{4}{3}$]C.(-4,$\frac{4}{3}$)D.[-4,$\frac{4}{3}$]

分析 由题意可得函数f(x)的图象和直线y=k有4个不同的交点,数形结合求得k的范围.

解答 解:数f(x)=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-4x-4,x≤0}\\{|lnx|,x>0}\end{array}\right.$,若函数g(x)=f(x)-k有4个不同的零点,
则函数f(x)的图象和直线y=k有4个不同的交点,如图:
当x≤0时,f(x)=$\frac{{x}^{3}}{3}$-4x-4,∴f′(x)=(x+2)(x-2),故函数f(x)在(-∞,-2)上,f′(x)>0,函数f(x)是增函数;
在(-2,0]上,f′(x)<0,函数f(x)是减函数,且极大值为f(-2)=$\frac{4}{3}$.
当x>0时,f(x)=|lnx|,故函数f(x)在(0,1)上单调递减,在[1,+∞)上单调递增,且f(1)=0.
∴0<k<$\frac{4}{3}$,
故选:A.

点评 本题主要考查函数的零点的定义,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若纯虚数Z满足(1-i)z=1+ai,则实数a等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知复数z=m(m-1)+(m2+2m-3)i,
(1)当实数m取什么值时,复数z是:
①零;
②纯虚数;
③z=2+5i.
(2)若在复平面C内,z所对应的点在第四象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若一个函数恰有两个零点,则称这样的函数为“双胞胎”函数,若函数f(x)=|ax-lnx+$\frac{a-1}{x}$|-a-3(a<0)为“双胞胎”函数,则实数a的取值范围为(-$\frac{2}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x|x-a|+2x.
(1)当a=0时,若对任意的m∈[-2,2],不等式f(mx-2)+f(x)<0恒成立,求实数x的取值范围;
(2)若存在a∈[-2,4],使得函数y=f(x)-at有三个不同的零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用反证法证明某命题时,对结论:“自然数a,b,c中至少有一个偶数.”正确的反设为(  )
A.a,b,c中至少有两个偶数
B.a,b,c都是奇数
C.a,b,c中至少有两个偶数或都是奇数
D.a,b,c都是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知矩阵P=$({\begin{array}{l}m&1\\{3m}&{-m}\end{array}})$,Q=$({\begin{array}{l}x\\ y\end{array}})$,M=$({\begin{array}{l}{-2}\\ m\end{array}})$,N=$({\begin{array}{l}1\\{m+3}\end{array}})$,若PQ=M+N.
(1)写出PQ=M+N所表示的关于x、y的二元一次方程组;
(2)用行列式解上述二元一次方程组.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),|$\overrightarrow{a}$-$\overrightarrow b$|=$\frac{{2\sqrt{5}}}{5}$.
(1)求cos(α-β)的值  
(2)若0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cosβ=$\frac{12}{13}$,求sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平行四边形ABCD中,AC与BD交于点O,F是线段DC上的点.若DC=3DF,设$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,则$\overrightarrow{AF}$=(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

同步练习册答案