精英家教网 > 高中数学 > 题目详情
2.已知$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),|$\overrightarrow{a}$-$\overrightarrow b$|=$\frac{{2\sqrt{5}}}{5}$.
(1)求cos(α-β)的值  
(2)若0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cosβ=$\frac{12}{13}$,求sinα.

分析 (1)利用两个向量坐标形式的运算,两角差的余弦公式求得cos(α-β)的值.
(2)由条件求得 sin(α-β)、sinβ的值,再根据sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ 计算求得结果.

解答 解:(1)∵$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),
|$\overrightarrow{a}$-$\overrightarrow b$|=$\sqrt{{(cosα-cosβ)}^{2}{+(sinα-sinβ)}^{2}}$=$\sqrt{2-2cos(α-β)}$=$\frac{{2\sqrt{5}}}{5}$.
∴cos(α-β)=$\frac{3}{5}$.
(2)由(1)得$cos(α-β)=\frac{3}{5}$,$\begin{array}{l}∵0<α<\frac{π}{2},-\frac{π}{2}<β<0$,
∴$0<α-β<π\\∴sin(α-β)=\frac{4}{5}…(7分)\\∵cosβ=\frac{12}{13},-\frac{π}{2}<β<0$,∴sin(α-β)=$\sqrt{{1-cos}^{2}(α-β)}$=$\frac{4}{5}$,
又∵cosβ=$\frac{12}{13}$,∴sinβ=-$\sqrt{{1-cos}^{2}β}$=-$\frac{5}{13}$.
∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ
=$\frac{4}{5}•\frac{12}{13}$+$\frac{3}{5}•(-\frac{5}{13})$=$\frac{33}{65}$.

点评 本题主要考查两个向量坐标形式的运算,两角差的余弦公式,同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.数列{an}中,若an+1=an-n,(n∈N+)且a1=1,则a5的值为(  )
A.0B.-2C.-5D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-4x-4,x≤0}\\{|lnx|,x>0}\end{array}\right.$,若函数g(x)=f(x)-k有4个不同的零点,则实数k取值范围是(  )
A.(0,$\frac{4}{3}$)B.[0,$\frac{4}{3}$]C.(-4,$\frac{4}{3}$)D.[-4,$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求证:ac+bd≤$\sqrt{{a}^{2}+{b}^{2}}$•$\sqrt{{c}^{2}+{d}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一款底面为正方形的长方体无盖金属容器(忽略其厚度),如图所示,当其容积为500cm3时,问容器的底面边长为多少时,所使用材料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数(1-$\sqrt{2}$i)•i的虚部是(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一同学在电脑中打出如下若干个圆(图中●表示实圆,○表示空心圆):
●○●●○●●●○●●●●○●●●●●○●●●●●●○
若将此若干个圆依次复制得到一系列圆,那么在前2000个圆中,有61个空心圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}{x^2}$-alnx(a∈R).
(1)试讨论函数的单调性;
(2)若函数f(x)在(1,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,如图,∠C=90°,AC=6,BC=8,设直线l与斜边AB交于点E,与直角边交于点F.设AE=x,是否存在直线l同时平分△ABC的周长和面积?若存在直线l,求出x的值,若不存在直线l,请说明理由.

查看答案和解析>>

同步练习册答案