精英家教网 > 高中数学 > 题目详情
10.已知正方体ABCD-A1B1C1D1内有一个内切球O,则在正方体ABCD-A1B1C1D1内任取点M,求点M在球O内的概率.

分析 本题是几何概型问题,欲求点M在球O内的概率,先由正方体ABCD-A1B1C1D1内的内切球O,求出其体积,再根据几何概型概率公式结合正方体的体积的方法易求解.

解答 解:本题是几何概型问题,设正方体的棱长为:2.
正方体ABCD-A1B1C1D1内的内切球O的半径是其棱长的一半,其体积为:V1=$\frac{4}{3}$π×13=$\frac{4}{3}$π,
则点M在球O内的概率是$\frac{\frac{4π}{3}}{8}$=$\frac{π}{6}$.

点评 本小题主要考查几何概型的应用、几何体和体积等基础知识,考查空间想象能力、化归与转化思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右顶点分别为A,B,过右焦点F的直线l与椭圆C交于P,Q两点(点P在x轴上方).
(1)若QF=2FP,求直线l的方程;
(2)设直线AP,BQ的斜率分别为k1,k2,是否存在常数λ,使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x,y满足不等式组$\left\{\begin{array}{l}{3x-y+3≥0}\\{x+2m≤0}\\{y-3m≥0}\end{array}\right.$,且z=2x-3y的最大值为13,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设不等式|x-4|-|2x-7|>$\frac{1}{3}$(x-7)的解集为M.
(1)求M;
(2)证明:当a、b∈M时,|$\sqrt{ab}$-2|<|2$\sqrt{a}$-$\sqrt{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,a,b,c分别是角A、B、C所对的边长,A、B均为锐角,若sinA=cosB,则$\frac{a+b}{c}$的最大值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天,若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为5040.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,将一块半径为2的半圆形纸板切割成等腰梯形的形状,下底AB是半圆的直径,上底CD的端点在半圆上,则所得梯形的周长的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知矩阵M=$[\begin{array}{l}{1}&{a}\\{-1}&{b}\end{array}]$,点(1,-1)在M对应的变换作用下得到点(-1,5),求矩阵M的特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|x>1},B={y|y=x2,x∈R},则(  )
A.A=BB.B?AC.A?BD.A∩B=∅

查看答案和解析>>

同步练习册答案