精英家教网 > 高中数学 > 题目详情
15.已知3件次品和2件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则第一次检测出的是次品且第二次检测出的是正品的概率为(  )
A.$\frac{1}{6}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{5}{6}$

分析 利用相互独立事件概率乘法公式求解.

解答 解:∵3件次品和2件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,
∴第一次检测出的是次品且第二次检测出的是正品的概率为:
p=$\frac{2}{5}×\frac{3}{4}$=$\frac{3}{10}$.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源是中国古代数学家祖冲之的圆周率,为庆祝该节日,某校举办的数学嘉年华活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得5个学豆、10个学豆、20个学豆的奖励,游戏还规定,当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲第一关、第二关、第三关的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,选手选择继续闯关的概率均为$\frac{1}{2}$,且各关之间闯关成功与否互不影响
(I)求选手甲第一关闯关成功且所得学豆为零的概率
(Ⅱ)设该学生所得学豆总数为X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数z满足(1+i)z=2i,则复数z=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为e,直线l:y=ex+a与x,y轴分别交于A、B点.
(Ⅰ)求证:直线l与椭圆C有且仅有一个交点;
(Ⅱ)设T为直线l与椭圆C的交点,若AT=eAB,求椭圆C的离心率;
(Ⅲ)求证:直线l:y=ex+a上的点到椭圆C两焦点距离和的最小值为2a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U=R,集合A={x|x≤3},B={x|x<2},则(∁UB)∩A=(  )
A.{x|x≤2}B.{x|1≤x≤3}C.{x|2<x≤3}D.{x|2≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面向量$\overrightarrow a,\overrightarrow b$为单位向量,$|\overrightarrow a+\overrightarrow b|=1$,则向量$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知定义在R上的可导函数f(x)满足f′(x)<1,若f(1-m)-f(m)>1-2m,则实数m的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|-2<x<3},B={y|y=|x|-3,x∈A},则A∩B等于(  )
A.{x|0<x<3}B.{x|-1<x<0}C.{x|-2<x<0}D.{x|-3<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图程序中,若输入x=-2,则输出y的值为(  )
A.1B.13C.-2D.-3

查看答案和解析>>

同步练习册答案