精英家教网 > 高中数学 > 题目详情
16.若复数z为纯虚数,且满足(2-i)z=a+i(i为虚数单位),则实数a的值为$\frac{1}{2}$.

分析 由(2-i)z=a+i,得$z=\frac{a+i}{2-i}$,然后利用复数代数形式的乘除运算化简复数z,由复数z为纯虚数,列出方程组,求解即可得答案.

解答 解:由(2-i)z=a+i,
得$z=\frac{a+i}{2-i}$=$\frac{(a+i)(2+i)}{(2-i)(2+i)}=\frac{(2a-1)+(a+2)i}{5}$=$\frac{2a-1}{5}+\frac{a+2}{5}i$,
∵复数z为纯虚数,
∴$\left\{\begin{array}{l}{\frac{2a-1}{5}=0}\\{\frac{a+2}{5}≠0}\end{array}\right.$,
解得a=$\frac{1}{2}$.
则实数a的值为:$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.对任意非零实数a、b,若a?b的运算原理如图所示,则(log28)?($\frac{1}{2}$)2=(  ) 
A.16B.15C.14D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆锥的母线l=10,母线与旋转轴的夹角α=30°,则圆锥的表面积为75π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.当实数x,y满足x2+y2=1时,|x+2y+a|+|3-x-2y|的取值与x,y均无关,则实数a的取范围是[$\sqrt{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=ax2-4x+c的值域为[0,+∞).
(1)判断此函数的奇偶性,并说明理由;
(2)判断此函数在[$\frac{2}{a}$,+∞)的单调性,并用单调性的定义证明你的结论;
(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=ax-b(a>0且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g(x)≤0,则$\frac{1}{a}+\frac{4}{b}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向$({cosθ=\frac{{\sqrt{2}}}{10}})$,300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.
(1)问10小时后,该台风是否开始侵袭城市A,并说明理由;
(2)城市A受到该台风侵袭的持续时间为多久?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合M={x|x2=x},N={x|lgx≤0},则M∩N{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设f(x)是定义在(-π,0)∪(0,π)的奇函数,其导函数为f'(x),且$f(\frac{π}{2})=0$,当x∈(0,π)时,f'(x)sinx-f(x)cosx<0,则关于x的不等式$f(x)<2f(\frac{π}{6})sinx$的解集为(  )
A.$(-\frac{π}{6},0)∪(0,\frac{π}{6})$B.$(-\frac{π}{6},0)∪(\frac{π}{6},π)$C.$(-π,-\frac{π}{6})∪(\frac{π}{6},π)$D.$(-π,-\frac{π}{6})∪(0,\frac{π}{6})$

查看答案和解析>>

同步练习册答案