8£®ÔÚijº£±õ³ÇÊи½½üº£ÃæÓÐһ̨·ç£¬¾Ý¼à²â£¬µ±Ç°Ì¨·çÖÐÐÄλÓÚ³ÇÊÐA£¨¿´×öÒ»µã£©µÄ¶«Æ«ÄϦȽǷ½Ïò$£¨{cos¦È=\frac{{\sqrt{2}}}{10}}£©$£¬300kmµÄº£ÃæP´¦£¬²¢ÒÔ20km/hµÄËÙ¶ÈÏòÎ÷Æ«±±45¡ã·½ÏòÒÆ¶¯£®Ì¨·çÇÖÏ®µÄ·¶Î§ÎªÔ²ÐÎÇøÓò£¬µ±Ç°°ë¾¶Îª60km£¬²¢ÒÔ10km/hµÄËٶȲ»¶ÏÔö´ó£®
£¨1£©ÎÊ10Сʱºó£¬¸Ą̃·çÊÇ·ñ¿ªÊ¼ÇÖÏ®³ÇÊÐA£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©³ÇÊÐAÊܵ½¸Ą̃·çÇÖÏ®µÄ³ÖÐøÊ±¼äΪ¶à¾Ã£¿

·ÖÎö £¨1£©½¨Á¢Ö±½Ç×ø±êϵ£¬¡­£¨1·Ö£©£¬Ôò³ÇÊÐA£¨0£¬0£©£¬µ±Ç°Ì¨·çÖÐÐÄ$P£¨{30\sqrt{2}£¬-210\sqrt{2}}£©$£¬ÉètСʱºǫ́·çÖÐÐÄPµÄ×ø±êΪ£¨x£¬y£©£¬ÓÉÌâÒ⽨Á¢·½³Ì×飬ÄÜÇó³ö10Сʱºó£¬¸Ą̃·ç»¹Ã»ÓпªÊ¼ÇÖÏ®³ÇÊÐA£®
£¨2£©tСʱºǫ́·çÇÖÏ®µÄ·¶Î§¿ÉÊÓΪÒÔ$P£¨{30\sqrt{2}-10\sqrt{2t}£¬-210\sqrt{2}+10\sqrt{2}t}£©$ΪԲÐÄ£¬60+10tΪ°ë¾¶µÄÔ²£¬ÓÉ´ËÀûÓÃÔ²µÄÐÔÖÊÄÜÇó³ö½á¹û£®

½â´ð ½â£º£¨1£©Èçͼ½¨Á¢Ö±½Ç×ø±êϵ£¬¡­£¨1·Ö£©
Ôò³ÇÊÐA£¨0£¬0£©£¬µ±Ç°Ì¨·çÖÐÐÄ$P£¨{30\sqrt{2}£¬-210\sqrt{2}}£©$£¬
ÉètСʱºǫ́·çÖÐÐÄPµÄ×ø±êΪ£¨x£¬y£©£¬
Ôò$\left\{\begin{array}{l}x=30\sqrt{2}-10\sqrt{2}t\\ y=-210\sqrt{2}+10\sqrt{2}t\end{array}\right.$£¬´Ëʱ̨·çµÄ°ë¾¶Îª60+10t£¬
10Сʱºó£¬|PA|¡Ö184.4km£¬Ì¨·çµÄ°ë¾¶Îªr=160km£¬
¡ßr£¼|PA|£¬¡­£¨5·Ö£©
¡à10Сʱºó£¬¸Ą̃·ç»¹Ã»ÓпªÊ¼ÇÖÏ®³ÇÊÐA£®¡­£¨1·Ö£©
£¨2£©ÓÉ£¨1£©ÖªtСʱºǫ́·çÇÖÏ®µÄ·¶Î§¿ÉÊÓΪÒÔ$P£¨{30\sqrt{2}-10\sqrt{2t}£¬-210\sqrt{2}+10\sqrt{2}t}£©$ΪԲÐÄ£¬60+10tΪ°ë¾¶µÄÔ²£¬
Èô³ÇÊÐAÊܵ½Ì¨·çÇÖÏ®£¬
Ôò$\sqrt{{{[{£¨{30\sqrt{2}-10\sqrt{2}t}£©-0}]}^2}+{{[{£¨{-210\sqrt{2}+10\sqrt{2}t}£©-0}]}^2}}¡Ü£¨{60+10t}£©$£¬
¡à300t2-10800t+86400¡Ü0£¬¼´t2-36t+288¡Ü0£¬¡­£¨5·Ö£©
½âµÃ12¡Üt¡Ü24¡­£¨1·Ö£©
¡à¸Ã³ÇÊÐÊŲ̈·çÇÖÏ®µÄ³ÖÐøÊ±¼äΪ12Сʱ£®¡­£¨1·Ö£©

µãÆÀ ±¾Ì⿼²éÔ²µÄÐÔÖÊÔÚÉú²úÉú»îÖеÄʵ¼ÊÓ¦Óã¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÒâÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½¨Á¢·½³Ì£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®µãM £¨3£¬-2£¬1£©¹ØÓÚÆ½ÃæyOz¶Ô³ÆµÄµãµÄ×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨-3£¬-2£¬1 £©B£®£¨-3£¬2£¬-1£©C£®£¨-3£¬-2£¬-1£©D£®£¨-3£¬2£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖª½ÇAÊÇ¡÷ABCµÄÄڽǣ¬Ôò¡°$cosA=\frac{1}{2}$¡±ÊÇ¡°$sinA=\frac{{\sqrt{3}}}{2}$µÄ³ä·Ö²»±ØÒªÌõ¼þ£¨Ìî¡°³ä·Ö·Ç±ØÒª¡±¡¢¡°±ØÒª·Ç³ä·Ö¡±¡¢¡°³äÒªÌõ¼þ¡±¡¢¡°¼È·Ç³ä·ÖÓַDZØÒª¡±Ö®Ò»£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èô¸´ÊýzΪ´¿ÐéÊý£¬ÇÒÂú×㣨2-i£©z=a+i£¨iΪÐéÊýµ¥Î»£©£¬ÔòʵÊýaµÄֵΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ä³°à°à»á×¼±¸´Óº¬¼×¡¢ÒÒµÄ6ÃûѧÉúÖÐѡȡ4ÈË·¢ÑÔ£¬ÒªÇó¼×¡¢ÒÒÁ½ÈËÖÁÉÙÓÐÒ»È˲μӣ¬ÄÇô²»Í¬µÄ·¢ÑÔ˳ÐòÓУ¨¡¡¡¡£©
A£®336ÖÖB£®320ÖÖC£®192ÖÖD£®144ÖÖ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èç¹ûÓɾØÕó$£¨\begin{array}{l}{a}&{2}\\{2}&{a}\end{array}£©$$£¨\begin{array}{l}{x}\\{y}\end{array}£©$=$£¨\begin{array}{l}{a+2}\\{2a}\end{array}£©$±íʾx£¬yµÄ¶þÔªÒ»´Î·½³Ì×éÎ޽⣬ÔòʵÊýa=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª¿Õ¼äÁ½ÌõÖ±Ïßm£¬nÁ½¸öÆ½Ãæ¦Á£¬¦Â£¬¸ø³öÏÂÃæËĸöÃüÌ⣺
¢Ùm¡În£¬m¡Í¦Á⇒n¡Í¦Á£»
¢Ú¦Á¡Î¦Â£¬m?¦Á£¬n?¦Â⇒n¡Í¦Á£»
¢Ûm¡În£»m¡Î¦Á⇒n¡Î¦Á
¢Ü¦Á¡Î¦Â£¬m¡În£¬m¡Í¦Á⇒n¡Í¦Â£®
ÆäÖÐÕýÈ·µÄÐòºÅÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÜB£®¢Ú¢ÛC£®¢Ù¢Ú¢ÜD£®¢Ù¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1¾­¹ýµã£¨2£¬3£©£¬Á½Ìõ½¥½üÏߵļнÇΪ60¡ã£¬Ö±Ïßl½»Ë«ÇúÏßÓÚA¡¢BÁ½µã£®
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨2£©Èôl¹ýÔ­µã£¬PΪ˫ÇúÏßÉÏÒìÓÚA£¬BµÄÒ»µã£¬ÇÒÖ±ÏßPA¡¢PBµÄбÂÊkPA£¬kPB¾ù´æÔÚ£¬ÇóÖ¤£ºkPA•kPBΪ¶¨Öµ£»
£¨3£©Èôl¹ýË«ÇúÏßµÄÓÒ½¹µãF1£¬ÊÇ·ñ´æÔÚxÖáÉϵĵãM£¨m£¬0£©£¬Ê¹µÃÖ±ÏßlÈÆµãF1ÎÞÂÛÔõÑùת¶¯£¬¶¼ÓÐ$\overrightarrow{MA}$•$\overrightarrow{MB}$=0³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¶Ôº¯Êýy=x2-4x+6£¬
£¨1£©Ö¸³öº¯ÊýͼÏóµÄ¿ª¿Ú·½Ïò¡¢¶Ô³ÆÖá·½³Ì¡¢¶¥µã×ø±ê£»
£¨2£©ËµÃ÷ͼÏóÓÉy=x2µÄͼÏó¾­¹ýÔõÑùÆ½ÒÆµÃÀ´£»
£¨3£©Çóº¯ÊýµÄ×î´óÖµ»ò×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸