精英家教网 > 高中数学 > 题目详情
6.若函数f(x)=klnx-x只有一个零点,则实数k的取值范围是(-∞,0]∪{e}.

分析 函数f(x)=klnx-x有且只有一个零点可转化为函数y=klnx与y=x的图象有且只有一个交点;作函数图象可知,分相切与不相切讨论即可.

解答 解:∵函数f(x)=klnx-x有且只有一个零点,
∴函数y=klnx与y=x的图象有且只有一个交点,
当k>0时,作函数y=klnx与y=x的图象如下,
函数y=klnx的导函数为:y′=$\frac{k}{x}$,
方程只有一个解,可得:$\frac{k}{{x}_{0}}=1$,并且x0=klnx0,解得k=e,
当k≤0时成立,函数f(x)=klnx-x只有一个零点,恒成立.
综上所述,实数k的取值范围为(-∞,0]∪{e}.
故答案为:(-∞,0]∪{e}.

点评 本题考查了学生作图与用图的能力,同时考查了导数的几何意义的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.无限循环小数为有理数,如:0.$\stackrel{•}{1}$=$\frac{1}{9}$,0.$\stackrel{•}{2}$=$\frac{2}{9}$,0.$\stackrel{•}{3}$=$\frac{1}{3}$,…,则可归纳出0.$\stackrel{•}{4}$$\stackrel{•}{5}$=(  )
A.$\frac{1}{2}$B.$\frac{5}{110}$C.$\frac{1}{20}$D.$\frac{5}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式|x-1|+|2x-1|≤5的解集为(  )
A.[-1,$\frac{1}{2}$)B.[-1,1]C.($\frac{1}{2}$,1]D.[-1,$\frac{7}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在区间[-π,2π]上的函数y=sin2x的图象与y=cosx的图象交点的横坐标之和等于$\frac{5π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=a,曲线C参数方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),已知C与l有且只有一个公共点.
(Ⅰ)求a的值;
(Ⅱ)过P点作平行于l的直线交C于A,B两点,且|PA|•|PB|=3,求点P轨迹的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在极坐标系中,已知O为极点,点A(2,$\frac{π}{3}$)关于极轴的对称点为B.
(1)求点B的极坐标和直线AB的极坐标方程;
(2)求△AOB外接圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2+ax+1(a∈R).
(1)若f(x)在[0,2]上的最小值为1,求实数a的取值范围;
(2)解关于x的不等式f(x)≥0;
(3)若关于x的方程f(f(x)-1)+f(x)=0无实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式|2x-1|(x+1)>0的解集为{x|x>-1且x≠$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知AB⊥平面BCE,CD∥AB,△BCE是等边三角形,AB=BC=2CD,F为线段BE的中点.
(1)求证:CF∥平面ADE;
(2)求证:平面ADE⊥平面ABE;
(3)求二面角B-AE-C的余弦值.

查看答案和解析>>

同步练习册答案