【题目】已知函数
其中![]()
(1)当
时,求曲线
在点
处的切线方程;
(2)当
时,求函数
的单调区间;
(3)若
对于
恒成立,求
的最大值.
【答案】(1)
(2)
的单调递增区间为
,单调递减区间为
.(3)![]()
【解析】
(1)根据导数的几何意义,求出切线斜率,由点斜式方程即可写出切线方程;
(2)求出导数,依据
在
上单调递增,且
,分别解不等式
以及
,即可求出函数
的单调增区间和减区间;
(3)由题意得
在
上恒成立,设
,用导数讨论函数的单调性,求出最小值
,可得
.再设
,求出函数
的最大值,即为
的最大值.
(1)由
,得
,
所以
,
.
所以曲线
在点
处的切线方程为
.
(2)由
,得
.
因为
,且
在
上单调递增,所以
由
得,
,
所以函数
在
上单调递增 ,
由
得,![]()
所以函数
在
上单调递减.
综上,函数
的单调递增区间为
,单调递减区间为
.
(3)由
,得
在
上恒成立.
设
,
则
.
由
,得
,(
).
随着
变化,
与
的变化情况如下表所示:
|
|
|
|
|
| 0 |
|
| ↘ | 极小值 | ↗ |
所以
在
上单调递减,在
上单调递增.
所以函数
的最小值为
.
由题意,得
,即
.
设
,则
.
因为当
时,
; 当
时,
,
所以
在
上单调递增,在
上单调递减.
所以当
时,
.
所以当
,
,即
,
时,
有最大值为
.
科目:高中数学 来源: 题型:
【题目】已知动点P到直线
的距离与到点
的距离之比为
.
(1)求动点P的轨迹
;
(2)直线
与曲线
交于不同的两点A,B(A,B在
轴的上方)
:
①当A为椭圆与
轴的正半轴的交点时,求直线
的方程;
②对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“公平正义”是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试”作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位?
某单位准备通过考试(按照高分优先录取的原则)录用
名,其中
个高薪职位和
个普薪职位.实际报名人数为
名,考试满分为
分. 考试后对部分考生考试成绩进行抽样分析,得到频率分布直方图如下:
![]()
试结合此频率分布直方图估计:
(1)此次考试的中位数是多少分(保留为整数)?
(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在矩形
中,
为边
的中点,将
沿直线
折起到
(
平面
)的位置,
为线段
的中点.
![]()
(1)求证:
平面
;
(2)已知
,当平面
平面
时,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
过点
,倾斜角为
,在以坐标原点为极点,
轴的非负半轴为极轴的极坐标系中,曲线
的方程为
.
(1)写出直线
的参数方程和曲线
的直角坐标方程;
(2)若直线
与曲线
相交于
两点,设点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,上顶点为
,直线
的斜率为
,且原点到直线
的距离为
.
(1)求椭圆
的标准方程;
(2)若不经过点
的直线
与椭圆
交于
两点,且与圆
相切.试探究
的周长是否为定值,若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.
![]()
(1)根据条形统计图,估计本届高三学生本科上线率.
(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.
(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);
(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为
,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.
可能用到的参考数据:取
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com