精英家教网 > 高中数学 > 题目详情
11.数列{an}是以d(d≠0)为公差的等差数列,a1=2,且a2,a4,a8成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{2}{{(n+1){a_n}}}$(n∈N*),求数列{bn}的前n项和Tn

分析 (Ⅰ)由题意可知:a2,a4,a8成等比数列,即(2+3d)2=(2+d)(2+7d),解得:d=2,由等差数列的通项公式即可求得求数列{an}的通项公式;
(Ⅱ)由(Ⅰ)化简bn,利用“裂项消项法”即可求得数列{bn}的前n项和Tn

解答 解:(Ⅰ)由a2,a4,a8成等比数列,
∴(2+3d)2=(2+d)(2+7d),整理得:d2-2d=0,
∵d=2,d=0(舍去),
∴an=2+2(n-1)=2n,
数列{an}的通项公式an=2n;
(Ⅱ)若bn=$\frac{2}{{(n+1){a_n}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
数列{bn}的前n项和Tn=1$-\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+$\frac{1}{3}-\frac{1}{4}$+…+$\frac{1}{n}-\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.

点评 本题考查等差数列以及等比数列的应用,数列的通项公式的求法,数列求和的方法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.命题“存在x0≥0,${2}^{{x}_{0}}$≤0”的否定是(  )
A.不存在x0≥0,${2}^{{x}_{0}}$>0B.存在x0≥0,${2}^{{x}_{0}}$≥0
C.对任意的x0≥0,2x≤0D.对任意的x0≥0,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.北京某小学组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有
且只有两个年级选择甲博物馆的方案有(  )
A.6 2×A 5 4B.6 2×5 4C.6 2×A 5 4D.6 2×5 4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题中,真命题是(  )
A.所有的素数是奇数B.?x∈R,x+$\frac{1}{x}$≥2
C.?x∈R,x2-2x-3=0D.存在两个相交平面垂直于同一直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)画出函数y=|x-2|的图象,写出函数的增区间和减区间;
(2)已知A={x|-2<x<-1或x>1},B={x|a≤x<b},A∪B={x|x>-2},A∩B={x|1<x<3},求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a=2,cos C=-$\frac{1}{4}$,3sin A=2sin B,则c=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某地汽车站在6:00~6:10内任何时刻发出第1班车,在6:10~6:20任何时刻发出第2班车,某人在6:00~6:20的任何时刻到达车站是等可能的,求此人乘坐前2班车的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xOy中,以点(0,2)为圆心,且与直线mx-y-3m-1=0(m∈R),相切的所有圆中半径最大的圆的标准方程为x2+(y-2)2=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-mx+m,(m∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)≤0对任意x∈(0,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案