精英家教网 > 高中数学 > 题目详情
16.f(x)=$\frac{1}{2}$cos(2x+$\frac{π}{6}$)+$\frac{1}{4}$.
①求f(x)的单调区间;
②若x∈[0,$\frac{π}{2}$],求f(x)的值域.

分析 ①根据余弦函数的单调性列出不等式解出f(x)的单调区间.
②根据x的范围求出2x+$\frac{π}{6}$的范围,根据余弦函数的图象和单调性得出f(x)的最值.

解答 解:①令-π+2kπ≤2x+$\frac{π}{6}$≤2kπ,解得-$\frac{7π}{12}$+kπ≤x≤-$\frac{π}{12}$+kπ,
令2kπ≤2x+$\frac{π}{6}$≤π+2kπ,解得-$\frac{π}{12}+kπ$≤x≤$\frac{5π}{12}+kπ$.
∴f(x)的增区间是[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ],减区间是[-$\frac{π}{12}+kπ$,$\frac{5π}{12}+kπ$],k∈Z.
②∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$].
∴当2x+$\frac{π}{6}$=$\frac{π}{6}$时,f(x)取得最大值$\frac{1}{2}×\frac{\sqrt{3}}{2}+\frac{1}{4}$=$\frac{\sqrt{3}+1}{4}$,
当2x+$\frac{π}{6}$=π时,f(x)取得最小值$\frac{1}{2}×(-1)$$+\frac{1}{4}$=-$\frac{1}{4}$.
∴f(x)的值域是[-$\frac{1}{4}$,$\frac{\sqrt{3}+1}{4}$].

点评 本题考查了余弦函数的图象与性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列函数中,与函数y=x+1是同一个函数的是(  )
A.$y={(\sqrt{x+1})^2}$B.$y=\root{3}{x^3}+1$C.$y=\frac{x^2}{x}+1$D.$y=\sqrt{x^2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.高三年级从甲(文)、乙(理)两个科组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩的茎叶图如图所示,其中甲组学生的平均分是85,乙组学生成绩的中位数是83.
(1)求x和y的值;
(2)计算甲组7位学生成绩的方差S2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC,P为三角形所在平面上的一点,且点P满足:a$•\overrightarrow{PA}$+b$•\overrightarrow{PB}$+c$•\overrightarrow{PC}$=0,则P点为三角形(  )
A.外心B.内心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.幂函数y=x${\;}^{-\frac{4}{3}}$是偶函数.(填“奇”或“偶”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x,y都是锐角,且tanx=3tany,证明:x-y≤$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}满足a${\;}_{n+1}^{2}$=a${\;}_{n}^{2}$+3且a1=1,an>0,则an=$\sqrt{3n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线l1:(a+1)x+a2y-3=0与直线l:2x+ay-2a-1=0平行,则a=(  )
A.0B.1C.0或1D.0或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法错误的是(  )
A.命题p:“?x0∈R,x02+x0+1<0”,则¬p:“?x∈R,x2+x+1≥0”
B.命题“若x2-4x+3=0,则x=3”的逆否命题是假命题
C.命题“若m>0,则方程x2+x-m=0有实数根”的否定是“若m>0,则方程x2+x-m=0没有实数根”
D.若p∧q为假命题,则p∨q为假命题

查看答案和解析>>

同步练习册答案