精英家教网 > 高中数学 > 题目详情
1.已知x,y都是锐角,且tanx=3tany,证明:x-y≤$\frac{π}{6}$.

分析 先用两角差的正切公式,求一下tan(x-y)的值,然后再由已知代换,利用均值不等式求得tan(x-y)的最大值,从而得到结果.

解答 证明:因为x,y都是锐角,x-y∈(0,$\frac{π}{2}$),且tanx=3tany,
所以tan(x-y)=$\frac{tanx-tany}{1+tanxtany}$=$\frac{2tany}{1+3ta{n}^{2}y}$
=$\frac{2}{\frac{1}{tany}+3tany}$≤$\frac{2}{2\sqrt{\frac{1}{tany}•3tany}}$=$\frac{\sqrt{3}}{3}$=tan$\frac{π}{6}$,当且仅当3tan2y=1时取等号,
∴x-y≤$\frac{π}{6}$.

点评 本题是中档题,考查两角和与差的正切函数的应用,基本不等式的应用,注意角的范围,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,已知A1A⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2$\sqrt{5}$,AA1=$\sqrt{7}$,BB1=2$\sqrt{7}$,点E和F分别为BC和A1C的中点.
(1)求证:EF∥平面A1B1BA;
(2)求证:平面AEA1⊥平面BCB1
(3)求几何体ABCA1B1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.P是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上的一点,A、B分别是圆(x+3)2+y2=1和(x-3)2+y2=1上的点,则|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|的取值范围是[8,12].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.乘积(x+y+z)(a-b+c)(m-n+p+q-3)展开后共有(  )项.
A.11B.12C.45D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.f(x)=$\frac{1}{2}$cos(2x+$\frac{π}{6}$)+$\frac{1}{4}$.
①求f(x)的单调区间;
②若x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图是某设计师设计的Y型饰品的平面图,其中支架OA,OB,OC两两成120°,OC=1,AB=OB+OC,且OA>OB,现设计师在支架OB上装点普通珠宝,普通珠宝的价值为M,且M与OB长成正比,比例系数为k(k为正常数):在△AOC区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为N,且N与△AOC的面积成正比,比例系数为4$\sqrt{3}$k,设OA=x,OB=y.
(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求N-M的最大值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数f(x)=$\sqrt{m{x}^{2}+(m-3)x-3}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足asinB=$\sqrt{3}$bcosA.
(1)求角A的大小;
(2)若a=$\sqrt{7}$,c=2,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线m被两平行线l1:x+y=0与l2:x+y+$\sqrt{6}$=0所截得的线段的长为2$\sqrt{3}$,则m的倾斜角可以是
①15°   ②45°  ③60°  ④105°⑤120°    ⑥165°
其中正确答案的序号是④或⑥.(写出所有正确答案的序号)

查看答案和解析>>

同步练习册答案