精英家教网 > 高中数学 > 题目详情
设a、b是互不相等的正数,则下列不等式中不恒成立的是(  )
A、(a+3)2>2a2+6a+11
B、
a+3
-
a+1
a+2
-
a
C、|a-b|+
1
a-b
≥2
D、a2+
1
a2
≥a+
1
a
考点:不等关系与不等式
专题:不等式的解法及应用
分析:本题要找出不等式中不恒成立的选项,必须证明命题的否定是真命题,得到正确选项.
解答: 解:(1)∵(a+3)2-(2a2+6a+11)=a2+6a+9-2a2-6a-11=-a2-2<0,∴(a+3)2<2a2+6a+11.
与选项A:(a+3)2>2a2+6a+11 矛盾,
∴A选项恒不成立.
(2)∵
a+3
+
a+1
a+2
+
a
,∴
1
a+3
+
a+1
1
a+2
+
a

a+3
-
a+1
2
a+2
-
a
2

a+3
-
a+1
a+2
-
a

∴B选项恒成立.
(3)∵a是正数,
a+
1
a
≥2

a2+
1
a2
-(a+
1
a
)
=(a+
1
a
)2-(a+
1
a
)-2
=(a+
1
a
+1)(a+
1
a
-2)
≥0.
a2+
1
a2
≥a+
1
a

∴D选项恒成立.
(4)当a-b>0时,|a-b|+
1
a-b
≥2成立,
当a-b<0时,例如a-b=-1,|a-b|+
1
a-b
=0,|a-b|+
1
a-b
≥2不成立,
∴C选项不恒成立.
故选C.
点评:本题考查的是不等关系,通过基本不等式法、作差法、特殊值法比较两式大小,研究不等式是否恒成立,得出本题结论,本题有一定难度,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以某些整数为元素的集合P具有以下性质:
(1)P中元素有正数,也有负数;
(2)P中元素有奇数,也有偶数;
(3)-1∉P;
(4)若x,y∈P,则x+y∈P.
试判断数0,2与集合P的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC外接圆半径为1,角A、B、C所对的边分别是a、b、c,且角A,B,C成等差数列,求a2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

是否存在过点(-5,-4)的直线l,使它与两坐标轴围成的三角形的面积为5,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
12-x-x2
的单调减区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:A1、A2是椭圆
x2
a2
+
y2
b2
=1的左右顶点,F1(-c,0),F2(c,0)是椭圆的两个焦点,若
A1F1
F1A2
A1F2
F2A2
,则λ+μ=
2(a2+c2)
b2

如果A是椭圆(a>b>0)上的任意一点,直线AF1、AF2分别和椭圆的交于分B、C两点,且
AF1
=λ1
F1B
AF2
=λ2
F2C
,那么λ12能否还为定值
2(a2+c2)
b2
?若能,请给出证明,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4},若A∩B=∅,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(2x-1)=2x-1的定义域为[1,4],则函数f(x)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=
x+1,x>0
x-1,x<0
的奇偶性.

查看答案和解析>>

同步练习册答案