精英家教网 > 高中数学 > 题目详情
已知在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且a2=b(b+c).
(1)求证:∠A=2∠B;
(2)若a=
3
b,判断△ABC的形状.
考点:三角形的形状判断
专题:解三角形
分析:(1)延长CA至D,使AD=AB,连接DB.根据a2=b(b+c)得到△BCA∽△DCB,然后由三角形中角的关系得答案;
(2)由a=
3
b结合a2=b(b+c)得到a2+b2=c2,说明△ABC为直角三角形.
解答: (1)证明:a2=b(b+c),
即BC2=AC(AC+AB),
延长CA至D,使AD=AB,连接DB.
则∠BAC=2∠D.
∴BC2=AC•CD,
BC
AC
=
CD
BC

又∠C=∠C,
∴△BCA∽△DCB,故∠D=∠ABC.
∴∠BAC=2∠ABC;
(2)解:∵a=
3
b,
∴a2=3b2
又a2=b(b+c),
∴3b2=b2+bc,c=2b.
∴a2+b2=4b2
c2=(2b)2=4b2
即a2+b2=c2
△ABC为直角三角形.
点评:本题考查了三角形形状的判断,训练了利用三角形相似求解三角形中角的关系,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知cosα=-
4
5
,且α为第三象限角,求sinα,tanα的值.
(2)已知tanα=3,计算
4sinα-2cosα
5cosα+3sinα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2x+2cos2x-1.
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间[-
π
6
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+
π
4
).在给出的直角坐标系中画出函数y=f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的4次预赛成绩记录如下:
     甲   82   84    79   95    
     乙   95   75    80   90
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(2)①求甲、乙两人的成绩的平均数与方差,
     ②若现要从中选派一人参加数学竞赛,根据你的计算结果,你认为选派哪位学生参加合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosxsinx,给出下列四个说法:
①若f(x1)=-f(x2),则x1=-x2,②点(π,0)是f(x)的一个对称中心,
③f(x)在区间[-
π
4
π
4
]上是增函数,④f(x)的图象关于直线x=
4
对称.
其中正确说法的序号是
 
.(只填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设曲线y=lnx在点(1,0)处的切线与直线ax+y+1=0垂直,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x(1-x)≥-2的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=1,b=2,cosC=
1
2
,则c=
 

查看答案和解析>>

同步练习册答案