精英家教网 > 高中数学 > 题目详情
已知函数,且.
(1)判断的奇偶性并说明理由;
(2)判断在区间上的单调性,并证明你的结论;
(3)若在区间上,不等式恒成立,试确定实数的取值范围.
(1)函数上为奇函数;(2)函数上是增函数(3)实数的取值范围是

试题分析:(1)由条件可求得函数解析式中的值,从而求出函数的解析式,求出函数的定义域并判断其是否关于原点对称(这一步很容易被忽略),再通过计算,与进行比较解析式之间的正负,从而判断的奇偶性;(2)由(1)可知函数的解析式,根据函数单调性的定义法进行判断求解,(常用的定义法步骤:取值;作差;整理;判断;结论);(3)由(1)可将函数解析式代入不等式可得,经未知数与待定数分离得,在区间上求出的最小值,从而确定实数的取值范围.
试题解析:(1)由得:
,其定义域为关于原点对称

∴函数上为奇函数。                    4分
(2)函数上是增函数,证明如下:
任取,且,则
那么
   ∴函数上是增函数。      8分
(3)由,得
,在区间上,的最小值是,得
所以实数的取值范围是.     14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数其中为自然对数的底数, .
(1)设,求函数的最值;
(2)若对于任意的,都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,恒过定点
(1)求实数
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,直接写出的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数的图象在公共点P处有相同的切线,求实数的值及点P的坐标;
(2)若函数的图象有两个不同的交点M、N,求实数的取值范围 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
⑴求函数的单调区间;
⑵如果对于任意的总成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)若是函数的极值点,是函数的两个不同零点,且,求
(2)若对任意,都存在为自然对数的底数),使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的极大值为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则下列说法正确的是(     )
A.有且只有一个零点B.至少有两个零点
C.最多有两个零点D.一定有三个零点

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数)的四个零点构成公差为2的等差数列,则的所有零点中最大值与最小值之差是(    )
A.4B.C.D.

查看答案和解析>>

同步练习册答案