【题目】已知在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以
轴的非负半轴为极轴,原点
为极点建立极坐标系,两种坐标系中取相同的长度单位,若直线
和
分别与曲线
相交于
、
两点(
,
两点异于坐标原点).
(1)求曲线
的普通方程与
、
两点的极坐标;
(2)求直线
的极坐标方程及
的面积.
科目:高中数学 来源: 题型:
【题目】某工厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=
x2+10x(万元).当年产量不小于80千件时,C(x)=51x+
-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年开始,直播答题突然就火了,在某场活动中,最终仅有23人平分100万奖金,这23人可以说是“学霸”级的大神.但随着直播答题的发展,其模式的可持续性受到了质疑,某网战随机选取500名网民进行了调查,得到的数据如下表:
男 | 女 | |
认为直播答题模式可持续 | 180 | 140 |
认为直播答题模式不可持续 | 120 | 60 |
(1)根据表格中的数据,用独立性检验的思维方法判断是否有97.5%的把握认为对直播答题模式的态度与性别有关系?
(2)已知在参与调查的500人中,有15%曾参加答题游戏瓜分过奖金,而男性被调查者有12%曾参加游戏瓜分过奖金,求女性被调查者参与游戏瓜分过奖金的概率.
参考公式:![]()
临界值表:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
与圆
相切,圆心
的坐标为
.
(1)求圆
的方程;
(2)设直线
与圆
没有公共点,求
的取值范围;
(3)设直线
与圆
交于
、
两点,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以
轴的非负半轴为极轴,原点
为极点建立极坐标系,两种坐标系中取相同的长度单位,若直线
和
分别与曲线
相交于
、
两点(
,
两点异于坐标原点).
(1)求曲线
的普通方程与
、
两点的极坐标;
(2)求直线
的极坐标方程及
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的相邻两对称轴间的距离为
,若将
的图像先向左平移
个单位,再向下平移
个单位,所得的函数
为奇函数.
(1)求
的解析式;
(2)若关于
的方程
在区间
上有两个不等实根,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答下列问题:
(1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程;
(2)求垂直于直线x+3y -5=0且与点P( -1,0)的距离是
的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知点
,
的坐标分别为
,
.直线
,
相交于点
,且它们的斜率之积是
.记点
的轨迹为
.
(Ⅰ)求
的方程.
(Ⅱ)已知直线
,
分别交直线
于点
,
,轨迹
在点
处的切线与线段
交于点
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com