精英家教网 > 高中数学 > 题目详情
17.若非零向量$\overrightarrow a,\overrightarrow b$满足|$\overrightarrow a$|=2|$\overrightarrow b$|=|$\overrightarrow a$+$\overrightarrow b$|,则向量$\overrightarrow a$与$\overrightarrow b$夹角的余弦值为-$\frac{1}{4}$.

分析 设向量$\overrightarrow a$与$\overrightarrow b$夹角为θ,θ∈[0,π],由题意两个向量的数量积的运算及其几何意义,求得cosθ的值.

解答 解:设向量$\overrightarrow a$与$\overrightarrow b$夹角为θ,θ∈[0,π],
由题意|$\overrightarrow a$|=2|$\overrightarrow b$|=|$\overrightarrow a$+$\overrightarrow b$|,可得|$\overrightarrow{a}$|2=4${|\overrightarrow{b}|}^{2}$=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}$•$\overrightarrow{b}$,
即2$\overrightarrow{a}•\overrightarrow{b}$+|$\overrightarrow{b}$|2=0,即2•2|$\overrightarrow{b}$|•|$\overrightarrow{b}$|cosθ=-|b|2,故$cosθ=-\frac{1}{4}$,
故答案为:-$\frac{1}{4}$.

点评 本题主要考查两个向量的数量积的运算及其几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.三棱锥A-BCD中,DA⊥AC,DB⊥BC,DA=AC,DB=BC,AB=$\frac{{\sqrt{2}}}{2}$CD,若三棱锥A-BCD的体积为$\frac{{2\sqrt{2}}}{3}$,则CD的长为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$(1+{y^3}){(x-\frac{1}{{{x^2}y}})^n}(n∈{N_+})$的展开式中存在常数项,则常数项为-84.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x2-2x)1nx+ax2+2,g(x)=f(x)-x-2.
(Ⅰ)当a=-1时,求f(x)在(1,f(1))处的切线方程;
(Ⅱ)若a>0且函数g(x)有且仅有一个零点,求实数a的值;
(Ⅲ)在(Ⅱ)的条件下,若e-2<x<e时,g(x)≤m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{ax}{{x}^{2}+3}$,若f′(1)=$\frac{1}{2}$,则实数a的值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,菱形ABCD与等边△PAD所在的平面相互垂直,AD=2,∠DAB=60°.
(Ⅰ)证明:AD⊥PB;
(Ⅱ)求三棱锥C-PAB的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=-1+sinθ\end{array}\right.(θ$为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的圆心的极坐标为(  )
A.$(1,-\frac{π}{2})$B.(1,π)C.(0,-1)D.$(1,\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x,y满足$\left\{\begin{array}{l}y≥1\;\\ y≤x-1\;\\ x+y≤m\;\end{array}\right.$且z=x2+y2的最大值为10,则m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=alnx+$\frac{1}{x}$-bx+1.
(1)若2a-b=4,则当a>2时,讨论f(x)单调性;
(2)若b=-1,F(x)=f(x)-$\frac{5}{x}$,且当a≥-4时,不等式F(x)≥2在区间[1,4]上有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案