精英家教网 > 高中数学 > 题目详情
8.直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°,求点B到平面AC1的距离及二面角B-CC1-A的大小.

分析 通过已知条件已知AB=1即为点B到平面AC1的距离,利用直线B1C与平面ABC成30°可求得BC,解Rt△ABC即可.

解答 解:∵∠BAC=90°,三棱柱ABC-A1B1C1为直三棱柱,
∴AB=1即为点B到平面AC1的距离,
∠ACB即为二面角B-CC1-A的平面角,
∵AB=BB1=1,直线B1C与平面ABC成30°,
∴∠BCB1=30°,
∴BC=BB1•cot30°=$\sqrt{3}$,
∴sin∠ACB=$\frac{AB}{BC}$=$\frac{\sqrt{3}}{3}$,
∴∠ACB=arcsin$\frac{\sqrt{3}}{3}$.

点评 本题考查线面角、二面角,考查解三角形,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.关于x的方程|log2x|-a=0的两个根为x1,x2(x1<x2),则2x1+x2的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=|x-5|+|x-3|.
(Ⅰ)求函数f(x)的最小值m;
(Ⅱ)若正实数a,b足$\frac{1}{a}$+$\frac{1}{b}$=$\sqrt{3}$,求证:$\frac{1}{{a}^{2}}$+$\frac{2}{{b}^{2}}$≥m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如果直角三角形的三条边的长度成等差数列,且较长的直角边的长度为a,求较短直角边和斜边的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的函数f(x)=m(x2-4x+lnx)-(2m2+1)x+2lnx,其中m∈R,其在(1,0)处的切线所对应函数g(x)同时满足g(x)-g(-x)=0,g(x)+g(-x)=0
(1)已知函数f(x)的图象与直线y=k2-2k无公共点,求实数k的取值范围
(2)已知p≤0,若对任意的x∈[1,2],总有成立f(x)≥$\frac{(p-2)x}{2}+\frac{p+2}{2x}+2x-{x}^{2}$,求P的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若实数a,b,c,d满足(b+a2-3lna)2+(c-d+2)2=0,则(a-c)2+(b-d)2的最小值为(  )
A.$\sqrt{2}$B.8C.$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.学校餐厅每天固定供应a名学生用餐,每星期一有A,B两种A、B两种菜可供选择.调查表明,凡在这星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有30%改选A种菜.设第n个星期一选A、B两种菜分别有an、bn分别表示第n个星期一选A的人数和选B的人数.
(1)试用an-1表示an,判断数列{an-$\frac{3}{5}$a}是否有为等比数列并说明理由;
(2)若第一星期选A种菜的有$\frac{a}{2}$人,求an;并问从第几星期一开始选A的人数超过B的人数的1.3倍.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用x,y表示平面区域$\left\{\begin{array}{l}{1≤x≤6}\\{1≤y≤6}\\{x,y∈{N}^{*}}\end{array}\right.$内整点(坐标为整数的点)横纵坐标,若用ξ表示整点的纵横坐标之差的绝对值.记“函数f(x)=x+$\frac{ξ}{x}$在[$\sqrt{3}$,+∞)上单调递增”为A事件,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对于函数f(x),g(x)和区间D,如果存在x0∈D,使得|f(x0)-g(x0)|≤1,则称x0是函数f(x)与g(x)在区间D上的“互相接近点”.现给出两个函数:①f(x)=x2+2,g(x)=2x;②f(x)=$\frac{lnx}{x}$,g(x)=2;③f(x)=e-x+1,g(x)=-$\frac{1}{x}$;④f(x)=lnx,g(x)=x.则在区间(0,+∞)上存在唯一“互相接近点”的是①④.

查看答案和解析>>

同步练习册答案