精英家教网 > 高中数学 > 题目详情
8.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{lg(2an+1)}为等比数列.
(2)令bn=$\frac{1}{a_n}$+$\frac{1}{{{a_n}+1}}$,证明:bn=$\frac{2}{{a}_{n}}$-$\frac{2}{{a}_{n+1}}$.
(3)令Tn=b1+b2+b3…+bn,求Tn

分析 (1)把点(an,an+1)代入函数解析式,两边取对数,变形可得数列{lg(2an+1)}是以2为公比的等比数列;
(2)由(1)求出数列{an}的通项公式,证明$\frac{1}{a_n}$+$\frac{1}{{{a_n}+1}}$=$\frac{2}{{a}_{n}}$-$\frac{2}{{a}_{n+1}}$得答案;
(3)由(2)的结论,裂项相消求得Tn

解答 (1)证明:由点(an,an+1)在函数f(x)=2x2+2x的图象上,得an+1=2${{a}_{n}}^{2}$+2an
∴2an+1+1=2(2${{a}_{n}}^{2}$+2an)+1=$(2{a}_{n}+1)^{2}$,
两边取对数,得lg(2an+1+1)=2lg(2an+1),
∴数列{lg(2an+1)}是以2为公比的等比数列;
(2)证明:由(1)得:数列{lg(2an+1)}是以2为公比的等比数列,且lg(2a1+1)=lg5,
∴lg(2an+1)=2n-1•lg5,则2an+1=${5}^{{2}^{n-1}}$,∴${a}_{n}=\frac{1}{2}({5}^{{2}^{n-1}}-1)$,
∴bn=$\frac{1}{a_n}$+$\frac{1}{{{a_n}+1}}$=$\frac{2}{{5}^{{2}^{n-1}}-1}+\frac{2}{{5}^{{2}^{n-1}}+1}$=$\frac{4•{5}^{{2}^{n-1}}}{{5}^{{2}^{n}}-1}$,
而$\frac{2}{{a}_{n}}-\frac{2}{{a}_{n+1}}=\frac{4}{{5}^{{2}^{n-1}}-1}-\frac{4}{{5}^{{2}^{n}}-1}$=$\frac{4•{5}^{{2}^{n}}-4-4•{5}^{{2}^{n-1}}+4}{({5}^{{2}^{n-1}}-1)({5}^{{2}^{n}}-1)}$=$\frac{4•{5}^{{2}^{n-1}}}{{5}^{{2}^{n}}-1}$,
∴bn=$\frac{2}{{a}_{n}}$-$\frac{2}{{a}_{n+1}}$;
(3)解:Tn=b1+b2+b3…+bn=$(\frac{2}{{a}_{1}}-\frac{2}{{a}_{2}})+(\frac{2}{{a}_{2}}-\frac{2}{{a}_{3}})+…+(\frac{2}{{a}_{n}}-\frac{2}{{a}_{n+1}})$
=$\frac{2}{{a}_{1}}-\frac{2}{{a}_{n+1}}=1-\frac{2}{\frac{1}{2}({5}^{{2}^{n}}-1)}$=$1-\frac{4}{{5}^{{2}^{n}}-1}$.

点评 本题考查数列的函数特性,考查了等比关系的确定,训练了裂项相消法求数列的和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.某市A,B两所中学的学生组队参加信息联赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队参赛.
(Ⅰ)求A中学至少有1名学生入选代表队的概率;
(Ⅱ)设X表示A中学参赛的男生人数,求X的分布列和数学期望;
(Ⅲ)已知3名男生的比赛成绩分别为76,80,84,3名女生的比赛成绩分别为77,a(a∈N*),81,若3名男生的比赛成绩的方差大于3名女生的比赛成绩的方差,写出a的取值范围(不要求过程).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.曲线C1的极坐标方程和曲线C2的参数方程分别为ρ=4sinθ,$\left\{\begin{array}{l}{x=-1-2t}\\{y=5+2t}\end{array}\right.$(t为参数).
(1)求曲线C1的直角坐标方程与曲线C2的普通方程,并指出是什么曲线;
(2)求曲线C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从一批含有6件正品,3件次品的产品中,有放回地抽取2次,每次抽取1件,设抽得次品数为X,则D(X)=$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,己知平行四边形ABCD中,∠BAD=60°,AB=6,AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG.
(I)求证:直线CE∥平面ABF;
(II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值.
(Ⅲ)若直线AF与平面 ABCD所成角为$\frac{π}{6}$,求证:FG⊥平面ABCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP于D,现将△PCD沿线段CD折成60°的二面角P-CD-A,设E,F,G分别是PD,PC,BC的中点.
(1)求证:PA∥平面EFG;
(2)若M为线段CD上的一个动点,问点M在什么位置时,直线MF与平面EFG所成的角最大?并求此最大角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点A(-1,0),B(1,0),△ABC的周长为6.
(Ⅰ)求动点C的轨迹E的方程;
(Ⅱ)设过点B(1,0)的直线l与曲线E相交于不同的两点M,N.若点P在y轴上,且|PM|=|PN|,求点P的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆O:x2+y2=1,圆O关于直线x+y+2=0对称的圆C.
(1)求圆C的方程;
(2)在直线l:2x+y-3=0上是否存在点P,过点P分别作圆O,圆C的两条切线PA,PB分别为A,B,有PA=PB?若存在,求出点P的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某三棱锥的三视图如图所示,其中左视图中虚线平分底边,则该三棱锥的所有面中最大面的面积是(  )
A.2B.$\sqrt{5}$C.2$\sqrt{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

同步练习册答案