【题目】已知四棱锥P-ABCD,底面ABCD是
,边长为
的菱形,又
底面
(即
与底面
内的任意一条直线垂直),且
,点
分别是棱
的中点.
![]()
(1)求异面直线
与
所成角的余弦值
(2)求点
到平面
的距离.
科目:高中数学 来源: 题型:
【题目】新高考,取消文理科,实行“
”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在
称为中青年,年龄在
称为中老年),并把调查结果制成下表:
年龄(岁) |
|
|
|
|
|
|
频数 | 5 | 15 | 10 | 10 | 5 | 5 |
了解 | 4 | 12 | 6 | 5 | 2 | 1 |
(1)分别估计中青年和中老年对新高考了解的概率;
(2)请根据上表完成下面
列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?
了解新高考 | 不了解新高考 | 总计 | |
中青年 | |||
中老年 | |||
总计 |
附:
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(3)若从年龄在
的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为
,求
的分布列以及
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂采用甲、乙两种不同生产方式生产某零件,现对两种生产方式所生产的这种零件的产品质量进行对比,其质量按测试指标可划分为:指标在区间
的为一等品;指标在区间
的为二等品,现分别从甲、乙两种不同生产方式所生产的零件中,各自随机抽取100件作为样本进行检测,测试指标结果的频率分布直方图如图所示:
![]()
若从甲种生产方式生产的这100件零件中按等级,利用分层抽样的方法抽取5件,再从这5件零件中随机抽取3件,求至少有1件一等品的概率;
该厂所生产这种零件,若是一等品每件可售50元,若是二等品每件可售20元
甲种生产方式每生产一件零件
无论是一等品还是二等品
的成本为10元,乙种生产方式每生产一件零件
无论是一等品还是二等品
的成本为18元
将频率分布直方图中的频率视作概率,用样本估计总体比较在甲、乙两种不同生产方式下,哪种生产方式生产的零件所获得的平均利润较高?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年11月,第2届中国国际进口博览会在中国上海召开,盛况空前,吸引了全球2800多家企业来参加.为评估企业的竞争力和长远合作能力,需要调查企业所在国家的经济状况.某机构抽取了50个国家,按照它们2017年的GDP总量,将收集的数据分成
,
,
,
,
(单位:亿美元)五组,做出下图的频率分布直方图:
![]()
![]()
(1)试根据频率分布直方图估计这些国家的平均GDP(同一组中的数据用该组区间的中点值代表).
(2)研究人员发现所抽取的50个国家中,有些很早就与中国建交开展合作,有些近期才开始与中国合作,将两类国家分为“合作过”和“未合作过”.请根据频率分布直方图完成上表,并说明是否有95﹪的把握说明这些国家的GDP超过4000亿美元与中国合作有关.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究机构随机调查了
,
两个企业各100名员工,得到了
企业员工收入的频数分布表以及
企业员工收入的统计图如下:
企业:
工资 | 人数 |
| 5 |
| 10 |
| 20 |
| 42 |
| 18 |
| 3 |
| 1 |
| 1 |
企业:
![]()
(1)若将频率视为概率,现从
企业中随机抽取一名员工,求该员工收入不低于5000元的概率;
(2)(i)若从
企业收入在
员工中,按分层抽样的方式抽取7人,而后在此7人中随机抽取2人,求这2人收入在
的人数
的分布列.
(ii)若你是一名即将就业的大学生,根据上述调查结果,并结合统计学相关知识,你会选择去哪个企业就业,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4 坐标系与参数方程选讲
在直角坐标系
中,直线
的参数方程
(
为参数),以坐标原点为极点,
轴的非负半轴为极轴,建立极坐标系,曲线
极坐标方程为
.
(1)求直线
的普通方程以及曲线
的参数方程;
(2)当
时,
为曲线
上动点,求点
到直线
距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有
A. 72种 B. 36种 C. 24种 D. 18种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点为
,点
在抛物线
上,
为坐标原点,
,且
.
(1)求抛物线
的方程;
(2)过焦点
,且斜率为1的直线
与抛物线
交于
,
两点,线段
的垂直平分线
交抛物线
于
,
两点,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的左右焦点分别为
,
,离心率为
,点
在椭圆
上,
,
,过
与坐标轴不垂直的直线
与椭圆
交于
,
两点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
,
的中点为
,在线段
上是否存在点
,使得
?若存在,求实数
的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com