精英家教网 > 高中数学 > 题目详情
16.在△ABC中,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=3,∠A=60°,D是BC的中点,则|$\overrightarrow{AD}$|=$\frac{\sqrt{37}}{2}$.

分析 由向量的中点表示形式,结合向量的数量积的定义和性质:向量的平方即为模的平方,计算即可得到所求值.

解答 解:D是BC的中点,可得
$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos∠A
=4•3•cos60°=6,
则有$\overrightarrow{AD}$2=$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)2
=$\frac{1}{4}$(|$\overrightarrow{AB}$|2+|$\overrightarrow{AC}$|2+2$\overrightarrow{AB}$•$\overrightarrow{AC}$),
=$\frac{1}{4}$(42+32+2•6)=$\frac{37}{4}$,
即有|$\overrightarrow{AD}$|=$\frac{\sqrt{37}}{2}$.
故答案为:$\frac{\sqrt{37}}{2}$.

点评 本题考查向量的中点表示形式,考查向量的数量积的定义和性质:向量的平方即为模的平方,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数y=sinx-$\frac{1}{2}$cosx(x∈[0,$\frac{π}{2}$])的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.两个数的等差中项是20,等比中项是12.则这两个数是4和36.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=2|x+a|的图象关于y轴对称,则80.25×$\root{4}{2}$+($\sqrt{2}$×$\root{3}{3}$)6×(-$\frac{7}{6}$)a=74.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.过点P(3,0)有一直线l,且点P是它在两条直线l1:2x-y-2=0与l2:x+y+3=0之间的线段的一个三等分点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=-x2+2x+3(x≥0)的值域为(  )
A.[3,+∞)B.(-∞,3]C.(-∞,4]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设全集U是自然数集N,集合A={x|x2>4,x∈N},B={0,2,3},则图中阴影部分所表示的集合是(  )
A.{x|x>2,x∈N}B.{x|x≤2,x∈N}C.{0,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图在矩形ABCD,AB=1,AD=$\sqrt{2}$,在矩形区域内任取一点P,使得该点落在阴影部分内的概率为$\frac{\sqrt{2}π}{6}-\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某著名大学向大一贫困新生提供A,B,C三个类型的助学金,要求每位申请人只能申请其中一个类型,且申请任何一个类型是等可能的,在该校的任意4位申请人中.
(1)求恰有3人申请A类奖助学金的概率;
(2)被申请的助学金类型的个数ξ的分布列与数学期望.

查看答案和解析>>

同步练习册答案