精英家教网 > 高中数学 > 题目详情
9.已知sinα=$\frac{{2\sqrt{2}}}{3}$,cos(α+β)=-$\frac{1}{3}$,且α,β∈(0,$\frac{π}{2}$),则sin(α-β)的值等于(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$\frac{{10\sqrt{2}}}{27}$

分析 由α,β都是锐角,得出2α、α+β的范围,由sinα和cos(α+β)的值,利用同角三角函数间的基本关系分别求出sin2α和sin(α+β)的值,然后把所求式子的角(α-β)变为2α-(α+β),利用两角和与差的正弦函数公式化简,把各自的值代入即即可求出值.

解答 解:∵α∈(0,$\frac{π}{2}$),
∴2α∈(0,π),
∵sinα=$\frac{{2\sqrt{2}}}{3}$,
∴cos2α=1-2sin2α=-$\frac{7}{9}$,
∴sin2α=$\sqrt{1-co{s}^{2}2α}$=$\frac{4\sqrt{2}}{9}$.
而α,β∈(0,$\frac{π}{2}$),
∴α+β∈(0,π),
∴sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{2\sqrt{2}}{3}$,
∴sin(α-β)=sin[2α-(α-β)]=sin2αcos(α+β)-cos2αsin(α+β)=$\frac{4\sqrt{2}}{9}$×(-$\frac{1}{3}$)-(-$\frac{7}{9}$)×$\frac{2\sqrt{2}}{3}$=$\frac{10\sqrt{2}}{27}$.
故选:D.

点评 此题考查了同角三角函数间的基本关系,以及两角和与差的正弦函数公式,熟练掌握公式是解本题的关键,同时注意角度的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为$\frac{1}{7}$,现有甲、乙两人从袋中轮流摸取1球.甲先取,乙后取,然后甲再取…取后不放回,每人最多取两次,若两人中有一人首先取到白球时则终止,每个球在每一次被取出的机会是等可能的.   
(1)求袋中原有白球的个数;
(2)求甲取到白球的概率;
(3)求取球4次终止的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=$\frac{1}{\sqrt{4-3x-{x}^{2}}}$+(x+1)0的定义域为(  )
A.[-4,1]B.(-4,1)C.[-4,-1)D.(-4,-1)∪(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a,b∈R,集合{1,a+b,a}={0,$\frac{b}{a}$,b},则b-1=(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知cot(α+$\frac{π}{3}}$)=-3,则tan(2α-$\frac{π}{3}}$)=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=mx3+x2+n,g(x)=alnx.
(1)若f(x)在点(1,f(1))处的切线方程为x+y-1=0,求f(x)的表达式;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)在(1)的条件下,设F(x)=$\left\{\begin{array}{l}f(x),x<1\\ g(x),x≥1\end{array}$,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义在(-2,2)上的函数f(x)既为减函数,又为奇函数,解关于a的不等式f(a+1)+f(2a-3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{(x+2)^{0}}{\sqrt{|x|-x}}$的定义域是(  )
A.(-∞,-2)∪(-2,0)B.(-∞,0)C.(-∞,2)∪(0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.分别求下列函数的导函数及在x=1处的导数.
(1)y=$\frac{4}{{x}^{2}}$;
(2)y=$\frac{1}{x}$-$\sqrt{x}$.

查看答案和解析>>

同步练习册答案