| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{3}$ | D. | $\frac{{10\sqrt{2}}}{27}$ |
分析 由α,β都是锐角,得出2α、α+β的范围,由sinα和cos(α+β)的值,利用同角三角函数间的基本关系分别求出sin2α和sin(α+β)的值,然后把所求式子的角(α-β)变为2α-(α+β),利用两角和与差的正弦函数公式化简,把各自的值代入即即可求出值.
解答 解:∵α∈(0,$\frac{π}{2}$),
∴2α∈(0,π),
∵sinα=$\frac{{2\sqrt{2}}}{3}$,
∴cos2α=1-2sin2α=-$\frac{7}{9}$,
∴sin2α=$\sqrt{1-co{s}^{2}2α}$=$\frac{4\sqrt{2}}{9}$.
而α,β∈(0,$\frac{π}{2}$),
∴α+β∈(0,π),
∴sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{2\sqrt{2}}{3}$,
∴sin(α-β)=sin[2α-(α-β)]=sin2αcos(α+β)-cos2αsin(α+β)=$\frac{4\sqrt{2}}{9}$×(-$\frac{1}{3}$)-(-$\frac{7}{9}$)×$\frac{2\sqrt{2}}{3}$=$\frac{10\sqrt{2}}{27}$.
故选:D.
点评 此题考查了同角三角函数间的基本关系,以及两角和与差的正弦函数公式,熟练掌握公式是解本题的关键,同时注意角度的范围.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-4,1] | B. | (-4,1) | C. | [-4,-1) | D. | (-4,-1)∪(-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{4}{3}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(-2,0) | B. | (-∞,0) | C. | (-∞,2)∪(0,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com