精英家教网 > 高中数学 > 题目详情
9.已知$(1+2i)\overline z=4+3i$,则z=2+i.

分析 把已知等式变形,利用复数代数形式的乘除运算化简求得$\overline{z}$,则z可求.

解答 解:∵$(1+2i)\overline z=4+3i$,
∴$\overline{z}=\frac{4+3i}{1+2i}=\frac{(4+3i)(1-2i)}{(1+2i)(1-2i)}=\frac{10-5i}{5}=2-i$,
则z=2+i.
故答案为:2+i.

点评 本题考查复数代数形式的乘除运算,考查共轭复数的概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知二次函数y=f(x)在x=2处取得最小值-4,且y=f(x)的图象经过原点.
(1)求f(x)的解析式;
(2)求函数y=f(x)在[-1,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.${log_2}\sqrt{2}+{log_{\frac{1}{2}}}2$=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{3}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列命题:
①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;
②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
③若有两个侧面垂直于底面,则该四棱柱为直四棱柱;
④一个棱锥可以有两条侧棱和底面垂直;
⑤一个棱锥可以有两个侧面和底面垂直;
⑥所有侧面都是正方形的四棱柱一定是正方体.
其中正确命题的序号是①⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线的顶点在原点,对称轴是x轴,并且顶点到准线的距离等于2.
(1)求这个抛物线的标准方程;
(2)当抛物线开口向右时,直线y=x+m与抛物线交于两不同的点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$\overrightarrow a,\overrightarrow b$是两个非零向量,且$|{\overrightarrow a}|=|{\overrightarrow b}|=\frac{{\sqrt{3}}}{3}|{\overrightarrow a+\overrightarrow b}|$,则$\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.210(6) 化成十进制数为78(10)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=lg(-x2+4x)的单调递增区间是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.$\sqrt{9-{x^2}}$=-x+m方程的解恰有1个,则m的范围为$\left\{{m|-3≤m<3或m=3\sqrt{2}}\right\}$.

查看答案和解析>>

同步练习册答案