9£®ÏÂÁÐÍÆÀíÊǹéÄÉÍÆÀíµÄÊÇ£¨¡¡¡¡£©
A£®ÓÉÓÚf£¨x£©=xcosxÂú×ãf£¨-x£©=-f£¨x£©¶Ô?x¡ÊR³ÉÁ¢£¬ÍƶÏf£¨x£©=xcosxÎªÆæº¯Êý
B£®ÓÉa1=1£¬an=3n-1£¬Çó³ös1£¬s2£¬s3£¬²Â³öÊýÁÐ{an}µÄǰnÏîºÍµÄ±í´ïʽ
C£®ÓÉÔ²x2+y2=1µÄÃæ»ýS=¦Ðr2£¬ÍƶϣºÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÃæ»ýS=¦Ðab
D£®ÓÉÆ½ÃæÈý½ÇÐεÄÐÔÖÊÍÆ²â¿Õ¼äËÄÃæÌåµÄÐÔÖÊ

·ÖÎö ¸ù¾Ý¹éÄÉÍÆÀí¡¢Àà±ÈÍÆÀíºÍÑÝÒïÍÆÀíµÄ¶¨Ò壬¶Ô´ð°¸ÖеÄËĸöÍÆÀí½øÐÐÅжϣ¬¼´¿ÉµÃµ½´ð°¸£®

½â´ð ½â£º¶ÔÓÚA£¬·ûºÏÈý¶ÎÂÛ£¬ÊÇÑÝÒïÍÆÀí£¬
¶ÔÓÚB£¬ÊǹéÄÉÍÆÀí£»
¶ÔÓÚC£¬D£¬ÊÇÀà±ÈÍÆÀí£»
¹ÊÑ¡B£®

µãÆÀ ±¾Ì⿼²é¹éÄÉÍÆÀí¡¢Àà±ÈÍÆÀíºÍÑÝÒïÍÆÀí£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚ¡÷ABC ÖУ¬a£¬b£¬c·Ö±ðÊÇÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒacos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3b}{2}$£®
£¨¢ñ£©ÇóÖ¤£ºa£¬b£¬c ³ÉµÈ²îÊýÁУ»
£¨¢ò£©ÈôB=$\frac{¦Ð}{3}$£¬b=4£¬Çó¡÷ABC µÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªm¡ÊN*£¬Ôò³Ë»ým£¨m+1£©£¨m+2£©¡­£¨m+15£©¿É±íʾΪ£¨¡¡¡¡£©
A£®A${\;}_{m}^{15}$B£®A${\;}_{m}^{16}$C£®A${\;}_{m+15}^{15}$D£®A${\;}_{m+15}^{16}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬Ä³ÈËΪ²âÁ¿ºÓ¶Ô°¶ËþABµÄ¸ß£¬ÏÈÔÚËþµ×BµÄÕý¶«·½ÏòÉϵĺӰ¶ÉÏѡһµãC£¬ÔÚµãC´¦²âµÃµãAµÄÑö½ÇΪ45¡ã£¬²¢ÔÚµãC±±Æ«¶«15¡ã·½ÏòµÄºÓ°¶ÉÏÑ¡¶¨Ò»µãD£¬²âµÃCDµÄ¾àÀëΪ20Ã×£¬¡ÏBDC=30¡ã£¬ÔòËþABµÄ¸ßÊÇ£¨¡¡¡¡£©
A£®10Ã×B£®$10\sqrt{2}$Ã×C£®$10\sqrt{3}$Ã×D£®$20\sqrt{3}$Ã×

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$ºÍÔ²O£ºx2+y2=b2£¨ÆäÖÐÔ²ÐÄOΪԭµã£©£¬¹ýÍÖÔ²CÉÏÒìÓÚÉÏ¡¢Ï¶¥µãµÄÒ»µãP£¨x0£¬y0£©ÒýÔ²OµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£®
£¨1£©ÇóÖ±ÏßABµÄ·½³Ì£»
£¨2£©ÇóÈý½ÇÐÎOABÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª¡÷ABCµÄÃæ»ýΪ$\frac{\sqrt{3}}{2}$£¬$\overrightarrow{AB}$$•\overrightarrow{AC}$=-3£¬ÔòA=$\frac{5¦Ð}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®É躯Êýf£¨x£©=ex£¨3x-1£©-ax+a£¬ÆäÖÐa£¼1£¬Èô½öÓÐÁ½¸öÕûÊýx0£¬Ê¹µÃf£¨x0£©£¼0£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-$\frac{2}{e}$£¬1]B£®[$\frac{7}{3{e}^{2}}$£¬1]C£®[0£¬$\frac{2}{e}$]D£®[$\frac{7}{3{e}^{2}}$£¬$\frac{2}{e}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªz=$\frac{3}{1+{i}^{2017}}$¸´Êý£¨iΪÐéÊýµ¥Î»£©£¬Ôò¸´ÊýzµÄ¹²éÊýÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Óɱ¶½Ç¹«Ê½cos2x=2cos2x-1£¬¿ÉÖªcos2x¿ÉÒÔ±íʾΪ½öº¬cosxµÄ¶þ´Î¶àÏîʽ£®
£¨1£©Àà±Ècos2x¹«Ê½µÄÍÆµ¼·½·¨£¬ÊÔÓýöº¬ÓÐcosxµÄ¶àÏîʽ±íʾcos3x£»
£¨2£©ÒÑÖª3¡Á18¡ã=90¡ã-2¡Á18¡ã£¬ÊÔ½áºÏµÚ£¨1£©ÎʵĽáÂÛ£¬Çó³ösin18¡ãµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸