精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是奇函数,当x>0时,有f(x)=x+
4
x
-1;且当x∈[-3,-1]时f(x)的值域是[n,m],则m-n的值是
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据函数奇偶性的对称性和单调性之间的关系,得到x∈[1,3]时f(x)的值域是[-m,-n],然后根据函数的表达式即可求解,m,n的值.
解答: 解:∵函数y=f(x)是奇函数,且当x∈[-3,-1]时f(x)的值域是[n,m],
∴根据奇函数的性质可知当x∈[1,3]时f(x)的值域是[-m,-n],
当x>0时,有f(x)=x+
4
x
-1,则f(x)在[1,2]上单调递减,在[2,3]上单调递增,
∴函数的最小值为f(2)=2+2-1=3,即-m=3,
解得m=-3.
又f(1)=1+4-1=4,f(3)=3+
4
3
-1
=3
1
3
<f(1),
∴f(x)的最大值为f(1)=4,
即-n=4,解得n=-4,
∴m-n=-3-(-4)=1.
故答案为:1.
点评:本题主要考查函数奇偶性的应用,以及函数y=x+
a
x
,a>0的单调性的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+y2=1(a>1)的长轴、短轴、焦距分别为A1A2、B1B2、F1F2,且|F1F2|2是|A1A2|2 与
|B1B2|2的等差中项
(Ⅰ)求椭圆C1的方程;
(Ⅱ)若曲线C2的方程为(x-t)2+y2=(t2+
3
t)2(0<t≤
2
2
),过椭圆C1左顶点的直线l与曲线C2相切,求直线l被椭圆C1截得的线段长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若函数f(x)=asinx+cosx的一个对称中心是(
π
6
,0)
,则a的值等于-
3

②函数f(x)=cos(2x+
π
2
)在区间[0,
π
2
]上单调递减;
③若函数f(x)=sin(2x+
π
3
)
的图象向左平移a(a>0)个单位后得到的图象与原图象关于直线x=
π
2
对称,则a的最小值是
π
6

④已知函数f(x)=sin(2x+ϕ) (-π<ϕ<π),若-|f(
π
6
)|≤f(x) 对任意x∈R恒成立,则:φ=
π
6
或-
6

其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断正误:
(1)若三棱锥的六条边都相等,则此三棱锥的三组对棱互相垂直;
 

(2)若三棱锥的三条侧棱与底面所成的角相等,则此三棱锥是正三棱锥.
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某饮料店的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间有下列数据:
x -2 -1 0 1 2
y 5 4 2 2 1
甲、乙、丙三位同学对上述数据进行了研究,分别得到了x与y之间的三个线性回归方程:
?
y
=-x+3
;②
?
y
=-x+2.8
;③
?
y
=-x+2.6
,④
?
y
=-x+2.4
,其中正确方程的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[-m,2m-2]的奇函数f(x)的值域为[m,2m],则函数y=f(x+1)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下面是一些命题的叙述语,其中命题和叙述方法都正确的是
 

(1)∵A∈α,B∈α,∴AB∈α.
(2)∵a∈α,α∈β,∴α∩β=a.
(3)∵A∈a,a?α,∴A∈α.
(4)∵A?a,a?α,∴A?α.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(x,y)为不等式组
x2+y2≤1
x-y-1≤0
x+y+1≥0
表示的平面区域上一点,则x+2y取值范围为(  )
A、[-
5
5
]
B、[-2,
5
]
C、[-1,2]
D、[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式:
x-y+2≥0
1≤x≤2
y≥2

(1)求
y
x
的取值范围;
(2)不等式xy≤ax2+2y2恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案