精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-1-lnx(a∈R).
(1)当a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在x=1处取得极值,对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围;
(3)当x>y>e-1时,求证:ex-y
ln(x+1)
ln(y+1)
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)求导数,利用导数的正负,确定f(x)在其定义域(0,+∞)单调性;
(2)函数f(x)在x=1处取得极值,可求得a=1,于是有f(x)≥bx-2?1+
1
x
-
lnx
x
≥b,构造函数g(x)=1+
1
x
-
lnx
x
,g(x)min即为所求的b的值;
(3)ex-y
ln(x+1)
ln(y+1)
,即证
ex
ln(x+1)
ey
ln(y+1)
,令g(x)=
ex
ln(x+1)
,则只要证明g(x)在(e-1,+∞)上单调递增.
解答: (1)解:f(x)=2-
1
x
=
2x-1
x

f′(x)<0得0<x<
1
2
,f′(x)>0得x>
1
2

∴f(x)在(0,
1
2
)
上递减,在(
1
2
,+∞)
上递增.
(2)解:∵函数f(x)在x=1处取得极值,
∴a=1,
∴f(x)≥bx-2?1+
1
x
-
lnx
x
≥b,
令g(x)=1+
1
x
-
lnx
x
,则g′(x)=-
1
x2
(2-lnx),
由g′(x)≥0得,x≥e2,由g′(x)≤0得,0<x≤e2
∴g(x)在(0,e2]上递减,在[e2,+∞)上递增,
∴g(x)min=g(e2)=1-
1
e2
,即b≤1-
1
e2

(3)证明:ex-y
ln(x+1)
ln(y+1)
,即证
ex
ln(x+1)
ey
ln(y+1)

令g(x)=
ex
ln(x+1)

则只要证明g(x)在(e-1,+∞)上单调递增,
又∵g′(x)=
ex[ln(x+1)-
1
x+1
]
ln2(x+1)

显然函数h(x)=ln(x+1)-
1
x+1
在(e-1,+∞)上单调递增.
∴h(x)>1-
1
e
>0,即g′(x)>0,
∴g(x)在(e-1,+∞)上单调递增,即
ex
ln(x+1)
ey
ln(y+1)

∴当x>y>e-1时,有ex-y
ln(x+1)
ln(y+1)
点评:本题考查利用导数研究函数的极值,考查恒成立问题,考查不等式的证明,着重考查分类讨论思想与构造函数思想的应用,体现综合分析问题与解决问题能力,属于属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数 f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值;
(3)若f(x)在x∈(1,e)有极值.函数g(x)=x3-x-2,证明:?x1∈(1,e),?x0∈(1,e),使得g(x0)=f(x1)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
是同一平面内的三个向量,其中
a
=(1,-2).
(Ⅰ)若|
c
|=2
5
,且
c
a
,求
c
的坐标;
(Ⅱ)若|
b
|=1,且
a
+
b
a
-2
b
垂直,求
a
b
的夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+bx2+cx+a在x=-
2
3
与x=1处取到极值,求b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)log3
27
+lg25+lg4+7 log72+(-9.8)0
(2)已知lg2=a,lg3=b,求log512的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+3x,且x=3是f(x)的极值点.
(1)求实数a的值;  
(2)求f(x)在x∈[1,5]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切与点(1,-11).
(1)求a,b的值;
(2)讨论函数f(x)的单调性,并求函数的极值;
(3)若函数在(m,m2+2m)上为减函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出下列函数的图象
(1)y=
2x+1
x-1

(2)y=x2-2|x|
(3)y=|2x-1|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列共有10项,其奇数项的和为15,偶数项的和为30,则该公比为
 

查看答案和解析>>

同步练习册答案