精英家教网 > 高中数学 > 题目详情
16.如图,在四面体ABCD中,E,F分别是棱AD,BC上的点,且$\frac{AE}{ED}$=$\frac{BF}{FC}$=$\frac{1}{2}$,已知AB=CD=3,EF=$\sqrt{5}$,求异面直线AB和CD所成的角.

分析 在BD上取靠近B的三等分点G,连接FG、GE,可证∠EGF或其补角就是异面直线AB和CD所成角,在△EFG中由勾股定理的逆定理可得∠EGF=90°,可得答案.

解答 解:(如图)在BD上取靠近B的三等分点G,连接FG、GE,
在△BCD中,可得$\frac{BG}{GD}$=$\frac{BF}{FG}$,故有FG∥DC,
同理在△ABD中,可得GE∥AB,
所以∠EGF或其补角就是异面直线AB和CD所成角,
在△BCD中,由GE∥CD,CD=3,$\frac{FG}{CD}$=$\frac{1}{3}$,得FG=1,
在△ABD中,由EG∥AB,AB=3,$\frac{EG}{AB}$=$\frac{2}{3}$,得EG=2,
在△EFG中,由EG=2,FG=1,EF=$\sqrt{5}$,则EG2+FG2=EF2
由勾股定理的逆定理,可得∠EGF=90°,
所以异面直线AB和CD所成角为90°.

点评 本题考查异面直线所成的角的求法,涉及勾股定理的逆定理的应用,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知在A-BCD的四面体中,AB⊥平面BCD,AD=3,CD=$\sqrt{2}$CB,则四面体A-BCD的最大体积为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=aex-x-2(a∈R),其中e=2.71828…是自然对数的底数.
(1)求函数y=f(x)的极值;
(2)若函数y=f(x)的图象在点(0,f(0))处的切线与x轴平行,且x∈(0,+∝)时,kf′(x)-xf(x)<(x+1)2恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若三棱锥A-BCD中所有的棱长都相等,则二面角A-BC-D的大小的余弦值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2\sqrt{6}}{9}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是正方形,AB=PA=1,E为侧棱PA上的点,$\overrightarrow{PE}$=λ$\overrightarrow{PA}$(0<λ<1).
(Ⅰ)证明:BD⊥CE;
(Ⅱ)当λ=$\frac{1}{3}$时,求两面角A-CE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线的顶点在原点,焦点是椭圆x2+5y2=5的左焦点.
(1)求抛物线的标准方程;
(2)若过点M(-1,1)作直线交抛物线于A、B两点,使得点M是AB弦的中点,求直线的方程及AB弦的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在正方形ABCD中,AB=2,点E为BC的中点,点F在边CD上,若$\overrightarrow{AE}$•$\overrightarrow{BF}$=0,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)在x=1处可导,且f′(1)=2,则$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$=(  )
A.2B.4C.-4D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$ax2+(1-a)x+ln$\frac{1}{x}$.
(Ⅰ)若f(x)有两个极值点,求实数a的取值范围;
(Ⅱ)当-1<a≤2时,讨论函数f(x)的零点个数.

查看答案和解析>>

同步练习册答案