精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)在x=1处可导,且f′(1)=2,则$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$=(  )
A.2B.4C.-4D.-1

分析 变形利用导数的运算定义即可得出.

解答 解:$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$=$\underset{lim}{△x→0}[-2×\frac{f(1-2△x)-f(1)}{-2△x}]$=-2f′(1)=-4.
故选:C.

点评 本题考查了导数的运算定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知Rt△ABC的斜边BC在平面α内,两直角边AB、AC与平面α所成角分别为30°和45°.A在α上射影为E.
(1)求斜边BC上的高AD与平面α所成的角及AB与平面ADE所成的角.
(2)设△ABC的面积为S,求△ABC在α上的射影三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四面体ABCD中,E,F分别是棱AD,BC上的点,且$\frac{AE}{ED}$=$\frac{BF}{FC}$=$\frac{1}{2}$,已知AB=CD=3,EF=$\sqrt{5}$,求异面直线AB和CD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设集合A={x|0<x-m<3},B={x|x≤0|或x≥3},分别求满足下列条件的实数m的取值范围;
(1)A∩B=∅;
(2)A∪B=B.
(3)若A∪B=R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}满足an=3an-1+3n,a2=18.
(1)证明数列{$\frac{{a}_{n}}{{3}^{n}}$}为等差数列;
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=ax+b,若不等式1<f(x)<4的解集为(2,3),则f(1)的值为-2或-7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.求和:22+23+…+2n=2n+1-4(n∈N*且n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+c在x=-$\frac{2}{3}$与x=1时都取得极值,求a,b的值与函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3+ax2+b(a∈R,b∈R).若a>0,且f(x)的极大值为5,极小值为1,求f(x)的解析式.

查看答案和解析>>

同步练习册答案