精英家教网 > 高中数学 > 题目详情
8.已知实数x,y满足|x|≤y+1,且-1≤y≤1,则z=2x+y的最大值(  )
A.2B.4C.5D.6

分析 作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.

解答 解:作出不等式组|x|≤y+1,且-1≤y≤1对应的平面区域如图
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,
直线y=-2x+z的截距最大,此时z最大,
由$\left\{\begin{array}{l}{y=1}\\{y=x-1}\end{array}\right.$,解得A(2,1),此时z=2×2+1=5,
故选:C.

点评 本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.两个粒子A,B从同一源发射出来,在某一时刻,它们的位移分别为$\overrightarrow{s_A}=({2,10}),\overrightarrow{s_B}=({4,3})$,粒子B相对粒子A的位移是$\overrightarrow s$,则$\overrightarrow s$在$\overrightarrow{s_B}$的投影是(  )
A.$\frac{13}{5}$B.$-\frac{13}{5}$C.$\frac{{13\sqrt{53}}}{53}$D.$-\frac{{13\sqrt{53}}}{53}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2-1<0},B={x|x>0},则集合(∁RA)∪B=(  )
A.(0,1]B.[1,+∞)C.(-∞,-1]∪[1,+∞)D.(-∞,-1]∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在平面直角坐标系xOy中,椭圆$C:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,A是椭圆的左顶点,M,N是椭圆上的两个动点,直线AM交y轴于点P.
(1)若$\overrightarrow{AP}=\frac{7}{8}\overrightarrow{AM}$,求直线AM的斜率;
(2)若a-b=1,圆C1:x2+(y-1)2=r2(0<r<1),直线AM和直线AN都与圆C1相切,当r变化时,试问直线MN是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若复数z满足(1+i)z=2-i,则复数z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年11月20日-22日在江西省南昌市举行了首届南昌国际马拉松赛事,赛后某机构用“10分制”调查了很多人(包括普通市民,运动员,政府官员,组织者,志愿者等)对此项赛事的满意度.现从调查人群中随机抽取16名,如图茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

(1)指出这组数据的众数和中位数;
(2)若满意度不低于9.5分,则称该被调查者的满意度为“极满意”.求从这16人中随机选取3人,至多有1人是“极满意”的概率;
(3)以这16人的样本数据来估计整个被调查群体的总体数据,若从该被调查群体(人数很多)任选3人,记ξ表示抽到“极满意”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A={x|x≥0},且A∩B=B,则集合B可能是(  )
A.{x|x≥2}B.{x|x≤1}C.{x|x≥-1}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.对于函数f(x),如果f(x)可导,且f(x)=f'(x)有实数根x,则称x是函数f(x)的驻点.若函数g(x)=x2(x>0),h(x)=lnx,φ(x)=sinx(0<x<π)的驻点分别是x1,x2,x3,则x1,x2,x3的大小关系是x3<x2<x1(用“<”连接).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的(  )
A.充要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案