精英家教网 > 高中数学 > 题目详情
2.设集合A={x|6x-x2<0},B={x|-1<x<10},则A∩B等于(  )
A.(0,6)B.(-1,6)∪(10,+∞)C.(-1,6)D.(-1,0)∪(6,10)

分析 求出A中不等式的解集确定出A,找出A与B的交集即可.

解答 解:集合A={x|6x-x2<0}=(-∞,0)∪(6,+∞),B={x|-1<x<10}=(-1,10),则A∩B=(-1,0)∪(6,10),
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在等差数列{an}中,给出以下结论.
①恒有a2+a8=a10
②数列{an}的前n项和公式不可能是Sn=n.
③若a1=12,S6=S14,则必有a9=0.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-2|+|x+1|.
(1)解关于x的不等式f(x)≥4-x;
(2)a,b∈{y|y=f(x)},试比较2(a+b)与ab+4的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且$\frac{a}{sinA}=\frac{2c}{{\sqrt{3}}}$.
(1)确定角C的大小;
(2)若c=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=a|x2-1|+x(x2-4)(a>0)在(-1,+∞)上(  )
A.零点的个数为1B.零点的个数为2
C.零点的个数为3D.零点的个数与a的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)为定义在R上的奇函数,当x>0时,f(x)=4x+x-$\frac{1}{x}$.
(1)求f(-1)的值;
(2)求f(x)的解析式;
(3)若函数g(x)=f(x)+a在区间(1,2)上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的顶点坐标分别为A(-1,5),B(-2,-1),C(4,3).
(Ⅰ)求AB边上的高所在直线的方程;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=-tan(2x-$\frac{3π}{4}$),则(  )
A.f(x)在($\frac{kπ}{2}$+$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{5π}{8}$)(k∈Z)上单调递减
B.f(x)在($\frac{kπ}{2}$+$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{5π}{8}$)(k∈Z)上单调递增
C.f(x)在(kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$)(k∈Z)上单调递减
D.f(x)在[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$](k∈Z)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=ax+x2-xlna(a>0且a≠1),对任意的x1,x2∈[0,1],不等式|f(x1)-f(x2)|≤a-1恒成立,则实数a的取值范围为[e,+∞).

查看答案和解析>>

同步练习册答案