精英家教网 > 高中数学 > 题目详情
15.过抛物线y2=4x的焦点F的直线交抛物线于A(x1,y1)、B(x2,y2)两点,且满足|AB|=10,则|x2-x1|=2$\sqrt{15}$.

分析 求出抛物线的焦点和准线方程,讨论直线AB的方程:x=1或y=k(x-1),代入抛物线方程,运用韦达定理和抛物线的定义,即可求得k,进而运用配方,即可得到所求值.

解答 解:y2=4x的焦点F(1,0),准线方程为x=-1.
若直线AB:x=1,
则代入抛物线方程y2=4x,可得y=±2,|AB|=4不成立,
设直线AB:y=k(x-1),
代入抛物线方程,可得k2x2-(2k2+4)x+k2=0,
则x1+x2=2+$\frac{4}{{k}^{2}}$,x1x2=1,
由抛物线的定义可得|AB|=x1+x2+2=4+$\frac{4}{{k}^{2}}$=10,
解得k2=$\frac{2}{3}$,
即有x1+x2=8,
则|x2-x1|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{64-4}$=2$\sqrt{15}$.
故答案为:2$\sqrt{15}$.

点评 本题考查抛物线的定义、方程和性质,主要考查抛物线的焦点和准线方程,同时考查直线和抛物线方程联立,运用韦达定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若关于x的方程|loga|x+b||=b(a>0,a≠1),有且只有两个解,则(  )
A.b=1B.b=0C.b>1D.b>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知AB为⊙O的直径,C,F为⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.求证:DE2=DA•DB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=6,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为$3\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=$\left\{{\begin{array}{l}{\frac{5}{4}sin\frac{π}{4}x,0≤x≤2}\\{{{(\frac{1}{2})}^x}+1,x>2}\end{array}}\right.$,若关于x的方程[f(x)]2+af(x)+b=0(a,b∈R),有且仅有6个不同实数根,则实数a的取值范围是(  )
A.(-$\frac{5}{2}$,-1)B.(-$\frac{5}{2}$,-$\frac{9}{4}$)C.(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1)D.(-$\frac{9}{4}$,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=x(x3-3),则f(x)在区间[0,2]上的最小值为$-\frac{9}{4}\root{3}{\frac{3}{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.某日某省x个监测点数据统计如下:
空气污染指数
(单位:μg/m3
[0,50](50,100](100,150](150,200]
监测点个数1540y10
(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(2)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求和:
(1)$\frac{1}{{A}_{2}^{2}}$+$\frac{1}{{A}_{3}^{2}}$+…+$\frac{1}{{A}_{n+1}^{2}}$;
(2)1×1!+2×2!+3×3!+…+n×n!;
(3)$\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+$…+$\frac{n}{(n+1)!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义域为R的函数f(x)满足f(x+1)=2f(x),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x∈[0,1)}\\{lo{g}_{\sqrt{2}}(x+1),x∈[1,2)}\end{array}\right.$,若x∈[-2,0)时,对任意的t∈[1,2]都有f(x)≥$\frac{t}{16}$-$\frac{a}{8{t}^{2}}$成立,则实数a的取值范围是(  )
A.(-∞,6)B.[6,+∞)C.(-∞,6]D.(-∞,12]

查看答案和解析>>

同步练习册答案