5£®¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©Âú×ãf£¨x+1£©=2f£¨x£©£¬µ±x¡Ê[0£¬2£©Ê±£¬f£¨x£©=$\left\{\begin{array}{l}{{x}^{2}-x£¬x¡Ê[0£¬1£©}\\{lo{g}_{\sqrt{2}}£¨x+1£©£¬x¡Ê[1£¬2£©}\end{array}\right.$£¬Èôx¡Ê[-2£¬0£©Ê±£¬¶ÔÈÎÒâµÄt¡Ê[1£¬2]¶¼ÓÐf£¨x£©¡Ý$\frac{t}{16}$-$\frac{a}{8{t}^{2}}$³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬6£©B£®[6£¬+¡Þ£©C£®£¨-¡Þ£¬6]D£®£¨-¡Þ£¬12]

·ÖÎö Ê×ÏÈÇó½â³öÔÚx¡Ê[-2£¬0£©Ê±µÄ·Ö¶Îº¯Êý±í´ïʽ£¬È»ºóÇó½â³öÕâ¸öº¯ÊýµÄ×îСֵ£¬È»ºóÔÙÀûÓúã³ÉÁ¢µÄÌõ¼þÇó½â£®

½â´ð ½â£ºÓÉÌâÒâµÃf£¨x£©=$\frac{1}{4}$f£¨x+2£©£¬µ±x¡Ê[-2£¬-1£©Ê±£¬x+2¡Ê[0£¬1£©£¬f£¨x£©=$\frac{1}{4}$f£¨x+2£©=$\frac{1}{4}[£¨x+2£©^{2}-£¨x+2£©]$£¾f£¨-$\frac{3}{2}$£©=$-\frac{1}{16}$£¬µ±x¡Ê[-1£¬0£©Ê±£¬
x+2¡Ê[1£¬2£©£¬f£¨x£©=$\frac{1}{4}$f£¨x+2£©=$\frac{1}{4}$$lo{g}_{\sqrt{2}}£¨x+3£©$¡Ýf£¨1£©=1£¬ËùÒÔµ±x¡Ê[-2£¬0£©Ê±£¬f£¨x£©µÄ×îСֵÊÇ-$\frac{1}{16}$£¬ËùÒÔ¶ÔÈÎÒâµÄt¡Ê[1£¬2]¶¼ÓÐ-$\frac{1}{16}$¡Ý$\frac{t}{16}$-$\frac{a}{8{t}^{2}}$³ÉÁ¢£¬ËùÒÔ2a¡Ýt3+t2£¬Áîg£¨t£©=t3+t2£¬g¡ä£¨t£©=3t2+2t£¬ÓÉg¡ä£¨t£©£¾0µÃt£¼-$\frac{2}{3}$»òt£¾0£¬¼´t¡Ê[1£¬2]ʱg£¨t£©µ¥µ÷µÝÔö£¬ËùÒÔg£¨t£©×î´óÖµÊÇg£¨2£©=12£¬ËùÒÔ2a¡Ý12£¬
ËùÒÔa¡Ý6£¬
¹ÊÑ¡£ºB£®

µãÆÀ ¹Ø¼üÊÇÇó½â³öf£¨x£©ÔÚÒÑÖªÇø¼äÉϵÄ×îСֵ£¬ÒÔ¼°ÕýÈ·ÀûÓò»µÈʽºã³ÉÁ¢µÄÌõ¼þ½øÐзÖÀë²ÎÊýÇó½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¹ýÅ×ÎïÏßy2=4xµÄ½¹µãFµÄÖ±Ïß½»Å×ÎïÏßÓÚA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©Á½µã£¬ÇÒÂú×ã|AB|=10£¬Ôò|x2-x1|=2$\sqrt{15}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©µ±x=$\frac{1}{2}$ʱÓм«Öµ£¬º¯ÊýͼÏó¹ýµã£¨0£¬-1£©£¬ÇÒÔڸõ㴦µÄÇÐÏßÓëÖ±Ïßx-y=0´¹Ö±£¬
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôg£¨x£©=xf£¨x£©£¬Çóg£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨3£©Éèh£¨x£©=£¨x+a£©f£¨x£©£¬Èô¶ÔÓÚÈÎÒâa¡Ê[-1£¬1]£¬h£¨x£©ÔÚ£¨-¡Þ£¬m£©ºÍ£¨n£¬+¡Þ£©É϶¼ÊÇÔöº¯Êý£¬ÇómºÍnµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èô²»µÈʽ|x-3|¡Üx+$\frac{a}{2}$µÄ½â¼¯Îª¿Õ¼¯£¬ÔòaµÄȡֵ·¶Î§Îª£¨-¡Þ£¬-6£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¼×²Î¼ÓijÖÖÑ¡°Î²âÊÔ£¬ÔÚ±¸Ñ¡µÄ10µÀÌâÖУ¬¼×ÄÜ´ð¶ÔÆäÖÐ5µÀÌ⣮¹æ¶¨Ã¿´Î¿¼ÊÔ¶¼´Ó±¸Ñ¡µÄ10µÀÌâÖÐËæ»ú³é³ö3µÀÌâ½øÐвâÊÔ£¬´ð¶ÔÒ»Ìâ¼Ó10´Î£¬´ð´íÒ»Ì⣨²»´ðÊÓΪ´ð´í£©¼õ5·ÖµÃ·Ö×îµÍΪ0·Ö£¬ÖÁÉÙµÃ15·Ö²ÅÄÜÈëÑ¡£®
£¨1£©Çó¼×µÃ·ÖµÄ·Ö²¼ÁУ»
£¨2£©Çó¼×ÈëÑ¡µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬ÀⳤΪaµÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬µãE¡¢F¡¢G·Ö±ðΪCD1¡¢A1B1¡¢B1C1µÄÖе㣬ÔòÈýÀâ×¶A-EFGµÄÌå»ýΪ$\frac{{a}^{3}}{16}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚ¡÷ABCÖУ¬AB¡ÍAC£¬$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$£¬ÇÒ|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|=1£¬Ôò$\overrightarrow{CA}$•$\overrightarrow{CB}$µÈÓÚ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®3D£®2$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÌÖÂÛlnx=x3-2ex2+mx·½³Ì¸ùµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ2£®
£¨1£©Ö¤Ã÷£ºAC¡ÍB1D£»
£¨2£©ÇóÈýÀâ×¶C-BDB1µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸