精英家教网 > 高中数学 > 题目详情
16.已知二次函数f(x)当x=$\frac{1}{2}$时有极值,函数图象过点(0,-1),且在该点处的切线与直线x-y=0垂直,
(1)求f(x)的解析式;
(2)若g(x)=xf(x),求g(x)的单调递减区间;
(3)设h(x)=(x+a)f(x),若对于任意a∈[-1,1],h(x)在(-∞,m)和(n,+∞)上都是增函数,求m和n的取值范围.

分析 (1)设出函数f(x)的表达式,利用待定系数法求出a、b、c的值,从而求出函数f(x)的表达式;
(2)先求出g(x)的表达式,再求出g(x)的导数,解g′(x)<0,从而求出g(x)的单调递减区间;
(3)先求出h(x)的导数,得到m、n是h′(x)=0的2个根,求出m、n的值,构造新函数,利用求导得到新函数的单调性,从而求出m、n的范围.

解答 解:(1)设f(x)=ax2+bx+c,
∴f′(x)=2ax+b,
由$\left\{\begin{array}{l}{f(0)=c=-1}\\{f′(\frac{1}{2})=a+b=0}\\{f′(0)=b=-1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=-1}\\{c=-1}\end{array}\right.$,
∴f(x)=x2-x-1;
(2)由g(x)=xf(x),
得:g(x)=x3-x2-x,
∴g′(x)=3x2-2x-1,
令g′(x)<0,解得:-$\frac{1}{3}$<x<1,
∴函数g(x)在(-$\frac{1}{3}$,1)递减;
(3)h(x)=(x+a)(x2-x-1),
∴h′(x)=3x2+2(a-1)x-(a+1),
∴m、n是方程h′(x)=0的2个根,且m<n,
解方程h′(x)=0,
得:m=$\frac{-(a-2)-\sqrt{{a}^{2}-a+7}}{3}$,n=$\frac{-(a-2)+\sqrt{{a}^{2}-a+7}}{3}$,
先求m的范围,不妨设m(a)=-(a-2)-$\sqrt{{a}^{2}-a+7}$,
则m′(a)=-1-$\frac{2a-1}{2\sqrt{{a}^{2}-a+7}}$=$\frac{-2\sqrt{{a}^{2}-a+7}+1-2a}{2\sqrt{{a}^{2}-a+7}}$,
∵-1≤a≤1,∴-1≤1-2a≤3,而-2$\sqrt{{a}^{2}-a+7}$≤-3$\sqrt{3}$,
∴m′(a)<0,
∴m(a)在[-1,1]单调递减,
∴m(a)min=m(1)=1-$\sqrt{7}$,m(a)max=m(-1)=0,
∴$\frac{1-\sqrt{7}}{3}$≤m≤0,
同理:$\frac{1+\sqrt{7}}{3}$≤n≤2.

点评 本题考查了导数的应用,二次函数的性质,考查函数的单调性、最值问题,在求m、n的范围时,构造新函数,利用求导得到新函数的单调性是解题的关键,本题有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,已知AB为⊙O的直径,C,F为⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.求证:DE2=DA•DB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.某日某省x个监测点数据统计如下:
空气污染指数
(单位:μg/m3
[0,50](50,100](100,150](150,200]
监测点个数1540y10
(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(2)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求和:
(1)$\frac{1}{{A}_{2}^{2}}$+$\frac{1}{{A}_{3}^{2}}$+…+$\frac{1}{{A}_{n+1}^{2}}$;
(2)1×1!+2×2!+3×3!+…+n×n!;
(3)$\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+$…+$\frac{n}{(n+1)!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,若刹车时以速度v(t)=7-2t+$\frac{5}{t+1}$(t的单位:s、v的单位:m/s)行驶至停止,则在刹车期间汽车行驶的距离(单位:m)是12+ln5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow{a}$=(4,7),$\overrightarrow{b}$=(-5,-2),则|$\overrightarrow{a}$-$\overrightarrow{b}$|=9$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=-x3-ax2-x+3在(-∞,+∞)上是单调函数,则a的取值范围是$-\sqrt{3}≤a≤\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义域为R的函数f(x)满足f(x+1)=2f(x),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x∈[0,1)}\\{lo{g}_{\sqrt{2}}(x+1),x∈[1,2)}\end{array}\right.$,若x∈[-2,0)时,对任意的t∈[1,2]都有f(x)≥$\frac{t}{16}$-$\frac{a}{8{t}^{2}}$成立,则实数a的取值范围是(  )
A.(-∞,6)B.[6,+∞)C.(-∞,6]D.(-∞,12]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,边长为2的正方形ABCD中,点E,F分别在线段AB与BC上,且满足:BE=BF=$\frac{1}{2}$BC,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点P,并连结PB.
(Ⅰ)求证:面PDF⊥面PEF;
(Ⅱ)求四棱锥P-BFDE的体积.

查看答案和解析>>

同步练习册答案