精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3+bx2+cx,g(x)=f(x)-f′(x),若g(x)是奇函数,求b,c的值.
考点:函数奇偶性的性质,导数的运算
专题:函数的性质及应用,导数的概念及应用
分析:求出函数f(x)的导函数,代入g(x)=f(x)-f′(x)整理,由g(x)是奇函数得到g(0)=0,g(-1)=-g(1),则b,c的值可求.
解答: 解:由f(x)=x3+bx2+cx,得
f′(x)=3x2+2bx+c,则
g(x)=f(x)-f′(x)=x3+(b-3)x2+(c-2b)x-c,
∵g(x)是奇函数,
∴g(0)=-c=0,c=0.
∴g(x)=x3+(b-3)x2-2bx.
由g(-1)=-1+b-3+2b=3b-4,
-g(1)=-1-b+3+2b=b+2.
g(-1)=-g(1)得:3b-4=b+2,b=3.
∴b=3,c=0.
点评:本题考查了导数的运算,考查了函数的奇偶性的性质,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,Sn=48,S2n=60,则S3n等于(  )
A、26B、27C、62D、63

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=1,an+1=3Sn(n≥1),则下列结论正确的是(  )
A、数列{an}是等比数列
B、数列a2,a3,…,an是等比数列
C、数列{an}是等差数列
D、数列a2,a3,…,an是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

化简或求值:
(1)2(
32
×
3
6+(
2
2
)
4
3
-4(
16
49
)
1
2
-
42
×80.25+(-2005)0
(2)log2.56.25+lg
1
100
+ln
e
+21+log23=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)函数f(x)=(a-b)x 
a
3
+b-3是幂函数,求b 2log32-a -
1
2
的值.
(2)计算:tan
π
4
-cos4
π
2
+2sin3π-sin2
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=4上有且只有四个点到直线12x-5y+c=0的距离为1,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},
(1)若m=3,求A∩B;
(2)若B是A的子集,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,其中a1=1,a3=-3
(1)求通项公式an
(2)若数列{an}的前n项和Sn=35,求n的值.

查看答案和解析>>

同步练习册答案