精英家教网 > 高中数学 > 题目详情
化简或求值:
(1)2(
32
×
3
6+(
2
2
)
4
3
-4(
16
49
)
1
2
-
42
×80.25+(-2005)0
(2)log2.56.25+lg
1
100
+ln
e
+21+log23=
 
考点:对数的运算性质,有理数指数幂的化简求值
专题:函数的性质及应用
分析:(1)利用指数的运算法则即可得出;
(2)利用对数的运算法则即可得出.
解答: 解:(1)原式=2(2
1
3
×3
1
2
)6
+(2
1
2
2
1
4
)
4
3
-4×[(
4
7
)2]
1
2
-2
1
4
×2
1
4
+1
=2×22×33+2-
16
7
-2+1=
1503
7

(2)log2.52.52+lg10-2+lne
1
2
+2log26
=2-2+
1
2
+6=
13
2

故答案为:
13
2
点评:本题考查了指数与对数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点A(1,0),B(0,1),点C在第二象限内,已知∠AOC=
6
,|
OC
|=2,且
OC
OA
OB
,则λ,μ的值分别是(  )
A、-1,
3
B、-
3
,1
C、1,-
3
D、
3
,-1

查看答案和解析>>

科目:高中数学 来源: 题型:

艺术节期间,秘书处派甲,乙,丙,丁四名工作人员分别到A,B,C三个不同的演出场馆工作,每个演出场馆至少派一人,若要求甲,乙两人不能到同一演出场馆工作,则不同的分派方案有(  )
A、36种B、30种
C、24种D、20种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x+c的图象与x轴恰好有三个不同的公共点,则实数c的取值范围是(  )
A、(-1,1)
B、[-1,1]
C、(-2,2)
D、[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax-1,a≠0
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.    
(Ⅲ)若a>0,求函数f(x)在区间[0,1]上的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数的定义域:y=
x+8
+
3-x

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+bx2+cx,g(x)=f(x)-f′(x),若g(x)是奇函数,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-1)2+alnx有两个极值点x1,x2且x1<x2
(Ⅰ)求实数a的取值范围,并讨论f(x)的单调性;
(Ⅱ)证明:f(x2)>
1-2ln2
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别为PA,BC的中点,且PD=AD=2
2

(1)求证:MN∥平面PCD;
(2)求证:平面PAC⊥平面PBD;
(3)求三棱锥P-ABC的体积.

查看答案和解析>>

同步练习册答案