分析 利用辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,根据f(x)是奇函数,可得f(0)=0,求出θ,x∈[-$\frac{π}{4}$,0]上为减函数,确定θ的值.
解答 解:函数f(x)=sin(2x+θ)+$\sqrt{3}$cos(2x+θ).
化简可得:f(x)=2sin(2x+θ+$\frac{π}{3}$),
∵f(x)是奇函数,可得f(0)=0,即:θ+$\frac{π}{3}$=kπ,k∈Z,
∴θ=kπ-$\frac{π}{3}$.
在x∈[-$\frac{π}{4}$,0]上为减函数;即$\left\{\begin{array}{l}{-\frac{π}{4}×2+\frac{π}{3}+θ≥\frac{π}{2}+2kπ}\\{θ+\frac{π}{3}≤\frac{3π}{2}+2kπ}\end{array}\right.$k∈Z,
可得:$\frac{2π}{3}+2kπ≤θ≤\frac{7π}{6}+2kπ$.
综上可得:满足题意的θ的值为$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.
点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\sqrt{2}$) | B. | (-$\sqrt{2}$,0) | C. | (-∞,0)∪($\sqrt{2}$,+∞) | D. | (-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 197 | 198 | 201 | 204 | 205 |
| y | 1 | 3 | 6 | 7 | m |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com