精英家教网 > 高中数学 > 题目详情
19.如图,平面ABCD⊥平面BCF,四边形ABCD是菱形,∠BCF=90°.
(1)求证:BF=DF;
(2)若点E为AF的中点,∠BCD=60°,且BC=CF=2,求四面体BDEF的体积.

分析 (1)连接AC,OF,设AC∩BD=O,推导出CF⊥平面ABCD,从而平面BCF⊥平面ABCD,推导出BD⊥AC,从而BD⊥平面BCF,进而BD⊥OF,由此能证明BF=DF.
(2)由点E为AF的中点,知四面体BDEF的体积${V_{B-DEF}}={V_{B-AED}}={V_{E-ABD}}=\frac{1}{2}{V_{F-ABD}}$,由此能求出四面体BDEF的体积.

解答 证明:(1)连接AC,OF,设AC∩BD=O,
∵平面ABCD⊥平面BCF,且交线为BC,∠BCF=90°,
∴CF⊥平面ABCD,CF?平面BCF,
∴平面BCF⊥平面ABCD,
∵四边形ABCD是菱形,∴BD⊥AC,
∴BD⊥平面BCF,∴BD⊥OF,
又BO=DO,∴BF=DF.
解:(2)∵点E为AF的中点,
∴点F到平面ABCD的距离是E到平面ABCD的距离的2倍,
∴四面体BDEF的体积${V_{B-DEF}}={V_{B-AED}}={V_{E-ABD}}=\frac{1}{2}{V_{F-ABD}}$,
由(1)知CF⊥平面ABCD.
∴${V_{B-DEF}}=\frac{1}{2}×\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×2=\frac{{\sqrt{3}}}{3}$.
∴四面体BDEF的体积为$\frac{{\sqrt{3}}}{3}$.

点评 本题考查线段相等的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想是,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.将下列角度化为弧度,弧度转化为角度
(1)780°,(2)-1560°,(3)67.5°(4)$-\frac{10}{3}π$,(5)$\frac{π}{12}$,(6)$\frac{7π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在等差数列{an}中,已知a4+a7+a10=15,$\sum_{i=4}^{14}$ai=77.若ak=13,则正整数k的值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历了3次涨停(每次上涨10%)又经历了3次跌停(每次下降10%),则该股民这只股票的盈亏情况(不考虑其他费用)为(  )
A.略有盈利B.无法判断盈亏情况
C.没有盈也没有亏损D.略有亏损

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=3sinx-4cosx(x∈R)的一个对称中心是(x0,0),则tanx0的值为(  )
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知非零向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$+2$\overrightarrow{b}$|,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为-$\frac{1}{4}$,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知p:x≥k,q:(x-1)(x+2)>0,若p是q的充分不必要条件,则实数k的取值范围是(  )
A.(-∞,-2)B.[-2,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果实数x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≤0}\\{x-y-2≤0}\\{x≥1}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sinθ=$\frac{1}{3}$,θ∈(0,$\frac{π}{2}$),则tan2θ=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

同步练习册答案