精英家教网 > 高中数学 > 题目详情
已知P,Q为抛物线f(x)=
x2
2
上两点,点P,Q的横坐标分别为4,-2,过P、Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为______.
因为点P,Q的横坐标分别为4,-2,
代入抛物线方程得P,Q的纵坐标分别为8,2.
由x2=2y,则y=
1
2
x2,所以y′=x,
过点P,Q的抛物线的切线的斜率分别为4,-2,
所以过点P,Q的抛物线的切线方程分别为y=4x-8,y=-2x-2
联立方程组解得x=1,y=-4
故点A的纵坐标为-4.
故答案为:-4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.
(1)求曲线C的方程;
(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.
(ⅰ)证明:k·kON为定值;
(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点坐标为(2,0),则抛物线的标准方程是(  )
A.y2=4xB.x2=4yC.y2=8xD.x2=8y

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,抛物线y2=4x的焦点为F,点P在抛物线上,若PF=2,则点P到抛物线顶点O的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程mx+ny2=0与mx2+ny2=1,(m,n∈R)且mn≠0在同一坐标系中所表示的曲线可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是(  )
A.x2=
8
3
3
y
B.x2=
16
3
3
y
C.x2=8yD.x2=16y

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F是抛物线y=x2的焦点,M、N是该抛物线上的两点,|MF|+|NF|=3,则线段MN的中点到x轴的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个酒杯的轴截面是抛物线x2=2y(0≤y<15)的一部分,若在杯內放入一个半径为3的玻璃球,则球的最高点与杯底的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=ax的焦点到准线的距离为4,则此抛物线的焦点坐标为(  )
A.(-2,0)或(2,0)B.(2,0)C.(-2,0)D.(4,0)或(-4,0)

查看答案和解析>>

同步练习册答案