精英家教网 > 高中数学 > 题目详情
4.甲、乙、丙三位同学上课后独立完成5道自我检测题,甲及格的概率为$\frac{4}{5}$,乙及格的概率为$\frac{2}{5}$,丙及格的概率为$\frac{2}{3}$,则三人中至少有一个及格的概率为$\frac{24}{25}$.

分析 先求出甲、乙、丙三位同学不及格的概率,三人中至少有一人及格的对立事件为三人都不及格,求出三人都不及格的概率,可得则三人中至少有一人及格的概率为1减三人都不及格的概率.

解答 解:由题意可得,三人中都不及格的概率为(1-$\frac{4}{5}$)•(1-$\frac{2}{5}$)•(1-$\frac{2}{3}$)=$\frac{1}{25}$,
∴则三人中至少有一个及格的概率为 1-$\frac{1}{25}$=$\frac{24}{25}$,
故答案为:$\frac{24}{25}$.

点评 本题考查了对立事件的概率的求法,做题时认真考虑,掌握正难则反的思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知圆M:x2+(y-2)2=r2(r>0)与曲线C:(y-2)(3x-4y+3)=0有三个不同的交点.
(1)求圆M的方程;
(2)已知点Q是x轴上的动点,QA,QB分别切圆M于A,B两点.
①若$|{AB}|=\frac{{4\sqrt{2}}}{3}$,求|MQ|及直线MQ的方程;
②求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在直三棱柱中ABC-A1B1C1中,二面角A-A1B-C是直二面角,AB=BC═2,点M是棱CC1的中点,三棱锥M-BCA1的体积为1.
(I )证明:BC丄平面ABA1
(II)求直线MB与平面BCA1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x+y)=f(x)-f(y)对全体实数x,y都成立,则f(x)是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),如图所示
(1)求f(x)的解析式
(2)若方程f(x)=m在x∈[0,$\frac{π}{2}$]有且只有一个实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列说法中正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.命题:“若a+bi=1+i(a,b∈R,i为虚数单位),则a=b=1”为真命题
C.全称命题:“?x∈R,x2>0”的否定命题是:“?x∈R,x2≤0”
D.一个命题的逆命题为真,则它的逆否命题一定为假

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)的导函数为f′(x),若x2f′(x)+xf(x)=sinx,x∈(0,6),f(π)=2,则下列结论正确的是④
①xf(x)在(0,6)单调递减         
②xf(x)在(0,6)单调递增
③xf(x)在(0,6)上有极小值2π    
④xf(x)在(0,6)上有极大值2π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列说法中正确的序号是④⑤
①2+i>1+i
②若一个数是实数,则其虚部不存在
③虚轴上的点表示的数都是纯虚数
④设z=1-i(i为虚数单位),若复数$\frac{2}{z}+{z^2}$在复平面内对应的向量为$\overrightarrow{OZ}$,则向量$\overrightarrow{OZ}$的模是$\sqrt{2}$
⑤若$z=\frac{1}{i}$,则z5+1对应的点在复平面内的第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.娄底市2016年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是(  ) 
A.20B.21C.22D.23

查看答案和解析>>

同步练习册答案