精英家教网 > 高中数学 > 题目详情
2.如图,在直三棱柱中ABC-A1B1C1中,二面角A-A1B-C是直二面角,AB=BC═2,点M是棱CC1的中点,三棱锥M-BCA1的体积为1.
(I )证明:BC丄平面ABA1
(II)求直线MB与平面BCA1所成角的正弦值.

分析 (Ⅰ)过A在平面ABA1内作AH⊥A1B,垂足为H,
只需证明AH丄CB,BC⊥AA1,即可证得AH∩AA1=A,得BC丄平面ABA1 
(Ⅱ)棱锥M-BCA1的体积为1,由(1)得AB⊥面BCM,
由VA1-BCM=$\frac{1}{3}×\frac{1}{2}×{s}_{△BCM}×AB=1$,解得CC1
 以B为原点,如图建立空间直角坐标系
则 M(2,O,$\frac{3}{2}$),C(2,0,0),A1(0,2,3),
利用向量求解.

解答 (Ⅰ)证明:过A在平面ABA1内作AH⊥A1B,垂足为H,
∵二面角A-A1B-C是直二面角,且二面角A-A1B-C的棱为A1B.
∴AH丄平面CBA1,∴直三棱柱中ABC-A1B1C1中有BC⊥AA1,且AH∩AA1=A,
∴BC丄平面ABA1 
(Ⅱ)解,∵棱锥M-BCA1的体积为1,由(1)得AB⊥面BCM,
∴VA1-BCM=$\frac{1}{3}×\frac{1}{2}×{s}_{△BCM}×AB=1$,解得CM=$\frac{3}{2}$,即CC1=3,
  以B为原点,如图建立空间直角坐标系
则 M(2,O,$\frac{3}{2}$),C(2,0,0),A1(0,2,3),
$\overrightarrow{BM}=(2,0,\frac{3}{2}),\overrightarrow{BC}=(2,0,0),\overrightarrow{B{A}_{1}}=(0,2,3)$,
设平面BCA1的法向量为$\overrightarrow{n}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=2x=0}\\{\overrightarrow{n}•\overrightarrow{B{A}_{1}}=2y+3z=0}\end{array}\right.$,取$\overrightarrow{n}=(0,-3,2)$.$cos<\overrightarrow{n},\overrightarrow{BM}>=\frac{3}{\sqrt{4+\frac{9}{4}}×\sqrt{9+2}}$=$\frac{6\sqrt{13}}{65}$.
∴直线MB与平面BCA1所成角的正弦值为$\frac{6\sqrt{13}}{65}$.



点评 本题考查了空间线面垂直判定,向量法求线面角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列命题正确的是(  )
A.若ac>bc,则a>bB.若a>b,c>d,则ac>bd
C.若a>b,则$\frac{1}{a}<\frac{1}{b}$D.若ac2>bc2,则a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=$\sqrt{-{x}^{2}+2x+3}$-$\sqrt{3}$(x∈[0,2])的图象绕坐标原点逆时针旋转θ (θ为锐角),若所得曲线仍是函数的图象,则θ的最大值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y≥2}\\{ax+y≤4}\\{y≥-1}\end{array}\right.$,目标函数z=3x+y,若a=1,则z的最小值为2;若z的最大值为5,则实数a=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=(x+1)2-alnx在区间(0,+∞)内任取有两个不相等的实数x1,x2,不等式$\frac{{f({{x_1}+1})-f({{x_2}+1})}}{{{x_1}-{x_2}}}$>1恒成立,则a的取值范围是(  )
A.(-∞,3)B.(-∞,-3)C.(-∞,3]D.(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知某空间几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{40}{3}$B.$\frac{34}{3}$C.$10+\frac{{4\sqrt{2}}}{3}$D.$6+\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$,g(x)=1-x$+\frac{{x}^{2}}{2}$$-\frac{{x}^{3}}{3}$,设函数F(x)=f(x)•g(x),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.甲、乙、丙三位同学上课后独立完成5道自我检测题,甲及格的概率为$\frac{4}{5}$,乙及格的概率为$\frac{2}{5}$,丙及格的概率为$\frac{2}{3}$,则三人中至少有一个及格的概率为$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数$f(x)=Asin(ωx+φ),x∈R(A>0,ω>0,|φ|<\frac{π}{2})$的部分图象如图所示,求:
(1)f(x)的表达式.
(2)f(x)的单调增区间.
(3)f(x)的最小值以及取得最小值时的x集合.

查看答案和解析>>

同步练习册答案