精英家教网 > 高中数学 > 题目详情
7.已知某空间几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{40}{3}$B.$\frac{34}{3}$C.$10+\frac{{4\sqrt{2}}}{3}$D.$6+\frac{{4\sqrt{3}}}{3}$

分析 由三视图可知:该几何体为左右两部分组成:其中左面由上下两部分组成,上面是一个直三棱柱,下面是正方体,右面是一个四棱锥.

解答 解:由三视图可知:该几何体为左右两部分组成:其中左面由上下两部分组成,上面是一个直三棱柱,下面是正方体,右面是一个四棱锥.
∴该几何体的体积V=23+$\frac{1}{2}×1×2×2$+$\frac{1}{3}×{2}^{2}×1$=$\frac{34}{3}$.
故选:B.

点评 本题考查了棱锥、棱柱、正方体的三视图与体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}中,a5=9,a7=13,等比数列{bn}的通项公式bn=2n-1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=|sin2x-4sinx-a|的最大值为4,则常数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=ex-alnx(其中a∈R,e为自然常数)
①?a∈R,使得直线y=ex为函数f(x)的一条切线;
②对?a<0,函数f(x)的导函数f′(x)无零点;
③对?a<0,函数f(x)总存在零点;
则上述结论正确的是①②③.(写出所有正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在直三棱柱中ABC-A1B1C1中,二面角A-A1B-C是直二面角,AB=BC═2,点M是棱CC1的中点,三棱锥M-BCA1的体积为1.
(I )证明:BC丄平面ABA1
(II)求直线MB与平面BCA1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C1的参数方程为:$\left\{\begin{array}{l}{x=3+3cosα}\\{y=3sinα}\end{array}\right.$ (α为参数),A是C1上的动点,B点满足$\overrightarrow{OB}$=4$\overrightarrow{OA}$,O为坐标原点,B点的轨迹为曲线C2
(1)求C2的参数方程;
(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=$\frac{π}{6}$与C1的异于极点的交点为M,与C2的异于极点的交点为N,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x+y)=f(x)-f(y)对全体实数x,y都成立,则f(x)是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列说法中正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.命题:“若a+bi=1+i(a,b∈R,i为虚数单位),则a=b=1”为真命题
C.全称命题:“?x∈R,x2>0”的否定命题是:“?x∈R,x2≤0”
D.一个命题的逆命题为真,则它的逆否命题一定为假

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x+a<0}.
(1)当a=-2时,求A∩B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案